The Utility of Rice Husk Ash from Biomass Power Plant of Nakhon Ratchasima Province for Synthesis of Nano-Silica for Using Cathode Material of Lithium Ion Battery

2018 ◽  
Vol 766 ◽  
pp. 51-57
Author(s):  
Onlamee Kamon In ◽  
Suthum Srilomsak ◽  
Nonglak Meethong

The high purity nanosilica materials could preparation from different synthesis route. In this research, rice husk ash was extracted into silica powder, by chemical extraction method. Then, chemical composition analysis with XRF technique. In addition, the extracted silica nanoparticles were analyzed by XRD technique. Physical structure of nanoscale particles by SEM imaging. The results showed that the chemical composition of rice husk ash consists mainly of silica. While, the extracted silica nanoparticles had a high silica content of 99.9999%. In addition, silica extracted with silica nanoparticles was confirmed by XRD at position 2θ ≈ 22° and the crystalline extracts were amorphous to the physical characteristics of the SEM images. In the future, nanosilicon powder may be used to synthesize lithium-ion batteries.

2020 ◽  
Vol 1010 ◽  
pp. 532-537
Author(s):  
Nur Haslinda Mohamed Muzni ◽  
Noorina Hidayu Jamil ◽  
Faizul Che Pa ◽  
Wan Mohd Arif

Rice husks (RH) are agricultural wastes available abundantly in rice producing country. A by-product obtained from combustion of rice husk is rice husk ash (RHA) which is rich in silica (SiO2) contents. This paper focused on the effect of acid leaching treatment on rice husk to produce high-purity silica. There are 4 different states of conditions involved; raw rice husk (RRH), treated rice husk (TRH), rice husk ash (RHA), and treated rice husk ash (TRHA). Citric acid; C6H8O7 was used as a leaching agent. TRH and TRHA was leached to see whether treated rice husk before combustion (TRH) or treated rice husk after combustion (TRHA) will produce more high-purity silica. Chemical composition analysis shows high amorphous silica content which is 98.47% with low metallic impurities at 1.0M C6H8O7, 70 oC for treated rice husk (TRH). X-ray diffraction (XRD) pattern shows the presence of amorphous silica in treated rice husk (TRH) and crystalline silica in treated rice husk ash (TRHA). Fragmentation of TRH into small pieces after acid leaching is seen where there is significant increase in the exposed surface areas. High-purity amorphous silica with more than 98% was prepared via citric acid leaching treatment and combustion process.


2019 ◽  
Vol 824 ◽  
pp. 94-99
Author(s):  
Panjaporn Wongwitthayakool ◽  
Tanittha Sintunon ◽  
Wichaya Tanagetanasombat ◽  
Pongkarn Soonthornchai ◽  
Ahmed A. Abbas

Silica extracted from rice husk ash (RHA-Si) by pretreatment with hydrochloric acid followed by calcination at 700°C, was prepared. It was investigated with regard to its chemical composition and structure using X-Ray Fluorescence spectroscopy (XRF) and X-Ray Diffractometry (XRD). RHA-Si (0, 0.25, 0.5 and 1% w/w) was incorporated into poly(methyl methacrylate) (PMMA) or acrylic resin powder. Microhardness, flexural strength and dynamic mechanical properties of RHA-Si filled PMMA were then determined. The chemical composition analysis showed that RHA-Si contains a large amount of silica with an amorphous structure. The microhardness of acrylic resin filled with RHA-Si does not change significantly with increasing RHA-Si loading. Flexural strength of filled acrylic resin increases with increasing RHA-Si loadings up to 0.25% w/w. It then decreases with increasing RHA-Si loadings. Dynamic mechanical behavior illustrates that polymer-filler interactions play an important role in reinforcement.


Tibuana ◽  
2020 ◽  
Vol 3 (01) ◽  
pp. 47-52
Author(s):  
Yanatra budi Pramana ◽  
M. Amin Pahlevi ◽  
Zhulianto Ashari ◽  
M. Fariz Effendi ◽  
Fibra Gilang Ramadhan

Utilization of rice husks in Indonesia in general is still very limited. Utilization of silica contained in rice husk ash, which has been used, among others, in the manufacture of sodium silicate. Silica compounds themselves can be used in and manufacturing basic materials for electronic and ceramic equipment, glass, rubber, cosmetic products, and pharmaceuticals. The addition of Mg can increase the silica content (SiO2) in rice husk ash. The best results show an effective Mg ratio of Mg addition to increase silica content is 1: 1. produces the highest amount of silica which is 58.12% of the rice husk ash with a size of 140 mesh


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eryani . ◽  
Sri Aprilia ◽  
Farid Mulana

<p>Agricultural waste such as rice straw, rice husk and rice husk ash have not been utilized properly. This waste of agricultural produce can actually be used as an alternative to bionanofiller because it contains an excellent source of silica. The silica content contained in the rice waste when combined with the polymer matrix can produce composites having high thermal and mechanical properties. Characterization of bionanofiller from this rice waste is done by SEM, XRF, FTIR, XRD and particle density. The result of SEM analysis from this rice waste is feasible to be used as filler because it has size 1 μm. Likewise with the results of XRF analysis that rice waste contains a high enough silica component that is 80.6255% - 89.83%. FTIR test results also show that bionanoparticles from rice waste have the same content of silica. In the XRD analysis the best selective gain of rice waste is found in rice husk ash which is characteristic of amorp silica at a range of 2ϴ = 22<br />. The largest density analysis of paddy waste was found in rice husk 0.0419 gr / cm , followed by rice straw by of 0.0417 gr / cm 3 and rice hulk ash 0.0407 g / cm 3</p>


2017 ◽  
Vol 7 ◽  
pp. 955-961 ◽  
Author(s):  
Ali Jabbar Abed Al-Nidawi ◽  
Khamirul Amin Matori ◽  
Azmi Zakaria ◽  
Mohd Hafiz Mohd Zaid

2019 ◽  
Vol 8 (3) ◽  
pp. 1849-1853

Malaysia has a great potential to reuse the agro-waste and reduce the environmental issues generated from the painting industry and agro-waste and achieve the objective of sustainable development. The objective of this work is to analyse physical effects of different blending ratio of rice husk ash based geopolymer binder (GB) surface coating on the hardness of mild steel and plywood. Geopolymer is an inorganic material produced by activated alkaline solution and aluminosilicate sources. Since Malaysia has been producing abundant of rice husk, this rice husk as the aluminosilicate source is used to form geopolymer. As it is known that filler is one of the combinations in paint including epoxy paint, the rice husk ash which has an abundant of silica content can be a ground-breaking source. Thus, an efficient eco-friendly coating that have a good fire resistance properties are very demanding. An optimum coating was formed by optimizing different ratio of GB with water-based or oil- based paint in term of hardness of surface coated. Based on the Rockwell hardness test, the result showed that 2:1 ratio of water-based coated mild steel plate has the highest Rockwell hardness number of 53.08, which meant the lowest depth of impression of 0.1538mm due to 150kgf major and minor load. This implies that different blending ratios addition of GB on plate surface have an effect on the hardness of mild steel and plywood


2019 ◽  
Vol 81 (4) ◽  
Author(s):  
Chuah Kai Jie ◽  
Mohd Zaidi Jaafar ◽  
Wan Rosli Wan Sulaiman

Rice husk ash (RHA) has been recently used as a source of silica (SiO2) production due to its high silica content. Besides, high purity silica nano-powder has been successfully synthesized from RHA and employed in various industries including electronic component manufacturing and fillers in polymers. Meanwhile, silica nanoparticles has been widely used in the application of Enhanced Oil Recovery (EOR). This is due to its ability in enhancing the foam stability besides modifying the wettability of the rocks in the formation. However, the synthesis of silica nanoparticles from RHA for the application in big scale operation such as EOR using conventional method is energy and time consuming. Therefore, the objective of this work is to study the effectiveness of using nano-sized rice husk ash (nano-RHA) as an additive to stabilize normal gas generated surfactant foam used in EOR. In order to decrease the size of the RHA into nano range, planetary ball mill was used in both dry grinding and wet grinding. Different surfactants including anionic and non-ionic were then used to study the polydispersity index of the dispersion and the hydrodynamic diameter using dynamic light scattering in dilute suspension. Besides, the nano-RHA was also characterized using FESEM, EDX, XRD and the change in specific area after grinding process was studied using BET. The foamability of different surfactants were then studied using minor concentration of nano-RHA. Next, the concentration of the nano-RHA was varied from 0.1wt% to 0.9wt% in normal gas bulk foam stability test using the suitable surfactant, the texture of foam was observed as well. Apart from that, the effect of oil on bulk foam was also studied. Finally, the result was compared using pure silica nanoparticles as the foam addictive at the same variation of concentrations. Dispersion stability tests showed that both anionic and non-ionic surfactants can be used to disperse nano-RHA in water. Moreover, in the presence of 0.9wt% of nano-RHA concentration, the bulk foam stability test results revealed that the sodium dodecyl sulfate (SDS) bulk foam half-life increased by 17.9% without the presence of oil, and gave an increment of 20.7% half-life in the presence of oil. Therefore, the study showed a potential of utilizing nano-RHA in stabilizing bulk foam.


2019 ◽  
Vol 166 (12) ◽  
pp. A2425-A2430 ◽  
Author(s):  
Yixin Li ◽  
Xiaoyang Liu ◽  
Li Liu ◽  
Weiping Liu ◽  
Yi Feng ◽  
...  

2022 ◽  
Vol 1048 ◽  
pp. 65-71
Author(s):  
Prasanna P. Kulkarni ◽  
B. Siddeswarappa ◽  
Mallikarjun Channalli

Utilization of agricultural by products as a reinforcement which offers a effective consequences on composite materials in the present days. Also a number of the agro waste substances as an ash are secondary filler material for Metal matrix composite materials. In this paper observe changed into achieved on characterization of agriculture waste ashes like Rice husk ash (RHA) and ASA (Areca sheath ash), burned at Controlled temperatures at 650°C in a metallurgical furnace at 3 exceptional durations of instances like 1hr, 2hr, and 3hr. Also each ashes were chemically and physically characterized, consequently decide the proportion of composition. The ensuing ashes have been analyzed the use of chemical evaluation via XRF and volumetric, gravimetric and instrumental test, SEM and EDS to determine their chemical composition which may be similarly used as reinforcement with metal matrix composites. Results acquired that impact of burning temperature and time on Chemical composition, Physical property, Loss of ignition (LOI) and Density. The ashes have been discovered to include excessive percent of silica content of 90% to 92% in Rice husk ash and 74% to 78% in Areca palm leaf sheath ash, after which accompanied through alumina content of 0.89% to 0.98% in each substances at 650oc temperatures respectively, additionally density of 0.98gm/cc for RHA and 1.12gm/cc Areca palm leaf sheath ash. Loss on ignition (LOI) of 4.5% to5.5% acquired on the equal temperature. These consequences suggests that rice husk ash and Areca sheath ash include excessive percent silica and a few alumina and may be utilized in chemical formulations requiring silica which include in metal matrix composites.


Sign in / Sign up

Export Citation Format

Share Document