Preparation of High Density BaZr0.97Y0.03O3-δ Ceramic and its Interaction with Titanium Melt

2018 ◽  
Vol 768 ◽  
pp. 261-266 ◽  
Author(s):  
Ju Yun Kang ◽  
Guang Yao Chen ◽  
Bao Tong Li ◽  
Zi Wei Qin ◽  
Xiong Gang Lu ◽  
...  

In this paper, the BaZrO3(BZ) and BaZr0.97Y0.03O3-δ(BZY3) powders were prepared by using the industrial grade BaCO3, ZrO2and Y2O3powders combining the conventional solid state reaction. The BaZrO3(BZ) and BaZr0.97Y0.03O3-δ(BZY3) ceramics were fabricated at 1750°C. The effect of ball milling time and sintering aid (TiO2) on the sinterability of BaZr0.97Y0.03O3-δ(BZY3) ceramics were investigated, and the improved stability of BaZrO3refractory with Y2O3additive were studied according to the refractory-metal interaction. The results revealed that the particle size of BZY3 powders decreased first and then increased with the increasing of ball milling time from 6h to 12h, and the minimum particle size was only 2.252μm at 8h. When 2wt.%TiO2was added, the sintered pellet of BZY3 was the most densest and the relative density was above 95%. After melting the Ti2Ni alloy on the BZY and BZ ceramics, the thickness erosion layer of BaZrO3and BZY3refractories and Ti2Ni alloy is approximately 50μm and 20μm respectively, showing that BZY3 was more stable than BaZrO3refractory.

2012 ◽  
Vol 531-532 ◽  
pp. 437-441 ◽  
Author(s):  
Qi He ◽  
Tao Liu ◽  
Jian Liang Xie

Fe-Ni-Cr alloy powders with the different components were prepared by Mechanical Alloying (MA). The phase structure, grain size, micro-strain and lattice distortion were determined with X-ray diffraction. The morphology and particle size of the powders were observed and analyzed using a field emission scanning electron microscopy. The results showed that the Fe-Ni-Cr nanocrystalline powders could be obtained by MA. The ball milling time could be reduced with increasing amount of Cr, resulting the formation of Fe-Ni-Cr powders. With the increasing amount of Cr, the speed of Ni diffusion to Fe lattice approaching saturation became more rapid. The particle size got smaller as the ball milling went further; the extent of micro-strain and distortion of lattice intensified; the solid solubility of Ni and Cr in Fe was increased. Finally the super-saturated solid solution of Fe was obtained.


2018 ◽  
Vol 941 ◽  
pp. 1990-1995
Author(s):  
Naidu V. Seetala ◽  
Cyerra L. Prevo ◽  
Lawrence E. Matson ◽  
Thomas S. Key ◽  
Ilseok I. Park

ZrB2 and HfB2 with incorporation of SiC are being considered as structural materials for elevated temperature applications. We used high energy ball milling of micron-size powders to increase lattice distortion enhanced inter-diffusion to get uniform distribution of SiC and reduce grain growth during Spark Plasma Sintering (SPS). High-energy planetary ball milling was performed on ZrB2 or HfB2 with 20vol% SiC powders for 24 and 48 hrs. The particle size distribution and crystal micro-strain were examined using Dynamic Light Scattering Technique and x-ray diffraction (XRD), respectively. XRD spectra were analyzed using Williamson-Hall plots to estimate the crystal micro-strain. The particle size decreased, and the crystal micro-strain increased with the increasing ball milling time. The SPS consolidation was performed at 32 MPa and 2,000°C. The SEM observation showed a tremendous decrease in SiC segregation and a reduction in grain size due to high energy ball milling of the precursor powders. Flexural strength of the SPS consolidated composites were studied using Four-Point Bend Beam test, and the micro-hardness was measured using Vickers micro-indenter with 1,000 gf load. Good correlation is observed in SPS consolidated ZrB2+SiC with increased micro-strain as the ball milling time increased: grain size decreased (from 9.7 to 3.2 μm), flexural strength (from 54 to 426 MPa) and micro-hardness (from 1528 to 1952 VHN) increased. The correlation is less evident in HfB2+SiC composites, especially in micro-hardness which showed a decrease with increasing ball milling time.


2014 ◽  
Vol 1058 ◽  
pp. 44-47
Author(s):  
Bo Feng Ma ◽  
Bin Tan ◽  
Wen Bo Zhao ◽  
Xin Liang ◽  
Fa Mei Hu ◽  
...  

To save land resources by the use of low-grade natural resources to realize a high cost performance product, the technology of prepared superfine quartz sand powder via the ball milling methods were investigated. The results are shown the mean particle size of quartz sand powder is gradually become small varied with prolonging the ball milling time. Before 60 minutes, the mean particle size is slashed, however, the range of varying mean particle size is less after 60 minutes under the ball milling rotate speed for 200r/min and the charge amount for 200g/L, so the ball milling time for 60 minutes is decided.The mean grain size of quartz powders are decreased vary with an increasing the ball milling rotate speed, and the rotate speed is lower, the distribution is wider, however, the rotate speed is higher, the distribution is narrower.The mean grain size of quartz powders are 11.25μm via a roller ball milling, the mean grain size of quartz powders are 7.37μm via a planetary ball milling, and the particle size distribution of quartz powders milled via a roller ball milling is wider than that of quartz powders milled via a planetary ball milling, which shows the of quartz powders milled via a roller ball milling is not more uniform than that of quartz powders milled via a planetary ball milling, the asymmetry powder is advantage for forming the high performance building materials body.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Lei Wu ◽  
Zhong Tao ◽  
Zhi-man Zhao ◽  
Wahab Abdul Ghafar ◽  
Yan Tao ◽  
...  

The use of phosphogypsum to prepare phosphorus building gypsum (PBG) is of great value to the resource utilization of phosphogypsum. In this study, PBG was ball-milled to obtain phosphorus building gypsum with good performance, which can meet the requirements of the Chinese standards for first-class building gypsum. Meanwhile, the changes of net slurry physical properties, mechanical properties, and particle size parameters of PBG under different treatment times were analyzed. With the increase of ball milling time, the particle size of PBG decreased rapidly and then stabilized, and the specific surface area gradually increased and then started to rise back. Ball milling can significantly reduce the standard consistency water requirement of phosphogypsum, resulting in a shorter setting time and higher strength of phosphogypsum. In the fixed water consumption test, the effect of ball milling time on the performance of phosphogypsum was small. Compared with sieving, washing, aging, and other means of PBG treatment, ball milling has the advantages of simplicity, environmental protection, and low cost, and it has some practical significance in production.


Author(s):  
N. Prasoetsopha ◽  
S. Pinitsoontorn ◽  
T. Kamwanna ◽  
K. Kurosaki ◽  
S. Yamanaka

2018 ◽  
Vol 3 (2) ◽  
pp. 11-14 ◽  
Author(s):  
Salomo Salomo ◽  
Erwin Erwin ◽  
Usman Malik ◽  
Sandra Utama Putra

Research on influence of Ball Milling time on magnetic properties composition and particle size of iron sand has been studied by Iron Sand Separator. The sampel was collected Kata beach Pariaman West Sumatera. Magnetic properties was studied using a solenoid wound with 2000 turns, length of 10 cm, and diameter 3 cm. Composition of the sample was studied by X-Ray Fluorescence, while particle size of the sample was studied by Particle Size Analyzer. The results showed that the size particle is 99,14 μm, 96,59 μm, and 93,34μm after processing by Ball Milling of 3, 5, and 7 hours respectively. The composition of the sample after being processed by Ball Milling of 7 hours is 12,2% and 47,387% respectively. More over, mass suseptibility of the sample increased after being processed by Ball Milling from 873,62 x 10-8 m3/Kg to 14.576,52 x 10-8 m3/Kg. These values are interval of ilmenite mineral (46 x 10-8 – 80.000 x 10-8) m3/Kg.


2015 ◽  
Vol 830-831 ◽  
pp. 429-432 ◽  
Author(s):  
Udaya ◽  
Peter Fernandes

The paper illustrates Carbon nanotubes reinforced pure Al (CNT/Al) composites and fly ash reinforced pure Al (FA/Al) composites produced by ball-milling and sintering. Microstructures of the fabricated composite were examined and the mechanical properties of the composites were tested and analysed. It was indicated that the CNTs and fly ash were uniformly dispersed into the Al matrix as ball-milling time increased with increase in hardness.


Sign in / Sign up

Export Citation Format

Share Document