scholarly journals Effect of Ball Milling Time on the Performance of Phosphorous Building Gypsum

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Lei Wu ◽  
Zhong Tao ◽  
Zhi-man Zhao ◽  
Wahab Abdul Ghafar ◽  
Yan Tao ◽  
...  

The use of phosphogypsum to prepare phosphorus building gypsum (PBG) is of great value to the resource utilization of phosphogypsum. In this study, PBG was ball-milled to obtain phosphorus building gypsum with good performance, which can meet the requirements of the Chinese standards for first-class building gypsum. Meanwhile, the changes of net slurry physical properties, mechanical properties, and particle size parameters of PBG under different treatment times were analyzed. With the increase of ball milling time, the particle size of PBG decreased rapidly and then stabilized, and the specific surface area gradually increased and then started to rise back. Ball milling can significantly reduce the standard consistency water requirement of phosphogypsum, resulting in a shorter setting time and higher strength of phosphogypsum. In the fixed water consumption test, the effect of ball milling time on the performance of phosphogypsum was small. Compared with sieving, washing, aging, and other means of PBG treatment, ball milling has the advantages of simplicity, environmental protection, and low cost, and it has some practical significance in production.

2015 ◽  
Vol 830-831 ◽  
pp. 429-432 ◽  
Author(s):  
Udaya ◽  
Peter Fernandes

The paper illustrates Carbon nanotubes reinforced pure Al (CNT/Al) composites and fly ash reinforced pure Al (FA/Al) composites produced by ball-milling and sintering. Microstructures of the fabricated composite were examined and the mechanical properties of the composites were tested and analysed. It was indicated that the CNTs and fly ash were uniformly dispersed into the Al matrix as ball-milling time increased with increase in hardness.


2018 ◽  
Vol 768 ◽  
pp. 261-266 ◽  
Author(s):  
Ju Yun Kang ◽  
Guang Yao Chen ◽  
Bao Tong Li ◽  
Zi Wei Qin ◽  
Xiong Gang Lu ◽  
...  

In this paper, the BaZrO3(BZ) and BaZr0.97Y0.03O3-δ(BZY3) powders were prepared by using the industrial grade BaCO3, ZrO2and Y2O3powders combining the conventional solid state reaction. The BaZrO3(BZ) and BaZr0.97Y0.03O3-δ(BZY3) ceramics were fabricated at 1750°C. The effect of ball milling time and sintering aid (TiO2) on the sinterability of BaZr0.97Y0.03O3-δ(BZY3) ceramics were investigated, and the improved stability of BaZrO3refractory with Y2O3additive were studied according to the refractory-metal interaction. The results revealed that the particle size of BZY3 powders decreased first and then increased with the increasing of ball milling time from 6h to 12h, and the minimum particle size was only 2.252μm at 8h. When 2wt.%TiO2was added, the sintered pellet of BZY3 was the most densest and the relative density was above 95%. After melting the Ti2Ni alloy on the BZY and BZ ceramics, the thickness erosion layer of BaZrO3and BZY3refractories and Ti2Ni alloy is approximately 50μm and 20μm respectively, showing that BZY3 was more stable than BaZrO3refractory.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1926 ◽  
Author(s):  
Lei Zhang ◽  
Zhifu Huang ◽  
Yangzhen Liu ◽  
Yupeng Shen ◽  
Kemin Li ◽  
...  

Mo2NiB2-Ni cermets have been extensively investigated due to their outstanding properties. However, studies have not systematically examined the effect of the powder milling process on the cermets. In this study, Mo, Ni, and B raw powders were subjected to mechanical ball milling from 1 h to 15 h. XRD patterns of the milled powders confirmed that a new phase was not observed at milling times of 1 h to 15 h. With the increase in the mechanical ball milling time from 1 h to 11 h, raw powders were crushed to small fragments, in addition to a more uniform distribution, and with the increase in the mechanical ball milling time to greater than 11 h, milled powders changed slightly. Mo2NiB2-Ni cermets were fabricated by reaction boronizing sintering using the milled powders at different ball milling times. The milling time significantly affected the microstructure and mechanical properties of Mo2NiB2-Ni cermets. Moreover, the Mo2NiB2 cermet powder subjected to a milling time of 11 h exhibited the finest crystal size and the maximum volume fraction of the Mo2NiB2 hard phase. Furthermore, the cermets with a milling time of 11 h exhibited a maximum hardness and bending strength of 87.6 HRA and 1367.3 MPa, respectively.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3483
Author(s):  
Shu Mei Lou ◽  
Chuan Dong Qu ◽  
Guang Xin Guo ◽  
Ling Wei Ran ◽  
Yong Qiang Liu ◽  
...  

Aluminum composites reinforced by graphene nanoplates(GNP) with a mass fraction of 0.5% (0.5 wt.% GNP/Al) were fabricated using cold pressing and hot pressing. An orthogonal test was used to optimize the fabrication parameters. Ball milling time, ball milling speed, and ultrasonic time have the largest influence on the uniformity of the graphene in the composites. Afterwards, the microstructure, interfacial properties, and fracture morphology of the composites obtained with different parameters were further analyzed. The results show that ball milling time and ball milling speed have obvious influences on the mechanical properties of the composite. In this paper, when the ball milling speed is 300 r/min and the ball milling time is 6 h, the dispersion uniformity of graphene in the 0.5 wt.% GNP/Al composite is the best, the agglomeration is the lowest, and the mechanical properties of the composites are the best, among which the tensile strength is 156.8 MPa, 56.6% higher than that of pure aluminum fabricated by the same process (100.1 MPa), and the elongation is 19.9%, 39.8% lower than that of pure aluminum (33.1%).


2013 ◽  
Vol 589-590 ◽  
pp. 584-589
Author(s):  
Hui Jun Zhou ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Han Lian Liu ◽  
Hong Tao Zhu ◽  
...  

In this study, titanium carbonitride (Ti(C,N)) based cermets were prepared by submicron particles, sintered in a vacuum and hot-pressing furnace. And the effect of different ball-milling time (36 h, 48 h, 60 h and 72 h, respectively, mostly aimed for mixing) on the mechanical properties of Ti(C,N)-based cermets, including transverse rupture strength (TRS), Vickers hardness (HV20), fracture toughness (KIC) and microstructure were investigated. The results showed that the TRS, hardness and fracture toughness were all improved with an increase in ball-milling time (not more than 60 h). Scanning electron microscopy (SEM) investigations on the microstructure of cermets with different ball-milling time revealed that the compound powders were not very well-distributed as a whole and there were coarse hard phase grains, but the microstructure was very homogeneous in parts, and the microstructure of cermets with a ball-milling time of 60 h is relatively more homogeneous. So a refinement to Ti(C,N) raw particles is needed in later studies.


2012 ◽  
Vol 531-532 ◽  
pp. 437-441 ◽  
Author(s):  
Qi He ◽  
Tao Liu ◽  
Jian Liang Xie

Fe-Ni-Cr alloy powders with the different components were prepared by Mechanical Alloying (MA). The phase structure, grain size, micro-strain and lattice distortion were determined with X-ray diffraction. The morphology and particle size of the powders were observed and analyzed using a field emission scanning electron microscopy. The results showed that the Fe-Ni-Cr nanocrystalline powders could be obtained by MA. The ball milling time could be reduced with increasing amount of Cr, resulting the formation of Fe-Ni-Cr powders. With the increasing amount of Cr, the speed of Ni diffusion to Fe lattice approaching saturation became more rapid. The particle size got smaller as the ball milling went further; the extent of micro-strain and distortion of lattice intensified; the solid solubility of Ni and Cr in Fe was increased. Finally the super-saturated solid solution of Fe was obtained.


2018 ◽  
Vol 941 ◽  
pp. 1990-1995
Author(s):  
Naidu V. Seetala ◽  
Cyerra L. Prevo ◽  
Lawrence E. Matson ◽  
Thomas S. Key ◽  
Ilseok I. Park

ZrB2 and HfB2 with incorporation of SiC are being considered as structural materials for elevated temperature applications. We used high energy ball milling of micron-size powders to increase lattice distortion enhanced inter-diffusion to get uniform distribution of SiC and reduce grain growth during Spark Plasma Sintering (SPS). High-energy planetary ball milling was performed on ZrB2 or HfB2 with 20vol% SiC powders for 24 and 48 hrs. The particle size distribution and crystal micro-strain were examined using Dynamic Light Scattering Technique and x-ray diffraction (XRD), respectively. XRD spectra were analyzed using Williamson-Hall plots to estimate the crystal micro-strain. The particle size decreased, and the crystal micro-strain increased with the increasing ball milling time. The SPS consolidation was performed at 32 MPa and 2,000°C. The SEM observation showed a tremendous decrease in SiC segregation and a reduction in grain size due to high energy ball milling of the precursor powders. Flexural strength of the SPS consolidated composites were studied using Four-Point Bend Beam test, and the micro-hardness was measured using Vickers micro-indenter with 1,000 gf load. Good correlation is observed in SPS consolidated ZrB2+SiC with increased micro-strain as the ball milling time increased: grain size decreased (from 9.7 to 3.2 μm), flexural strength (from 54 to 426 MPa) and micro-hardness (from 1528 to 1952 VHN) increased. The correlation is less evident in HfB2+SiC composites, especially in micro-hardness which showed a decrease with increasing ball milling time.


2014 ◽  
Vol 1058 ◽  
pp. 44-47
Author(s):  
Bo Feng Ma ◽  
Bin Tan ◽  
Wen Bo Zhao ◽  
Xin Liang ◽  
Fa Mei Hu ◽  
...  

To save land resources by the use of low-grade natural resources to realize a high cost performance product, the technology of prepared superfine quartz sand powder via the ball milling methods were investigated. The results are shown the mean particle size of quartz sand powder is gradually become small varied with prolonging the ball milling time. Before 60 minutes, the mean particle size is slashed, however, the range of varying mean particle size is less after 60 minutes under the ball milling rotate speed for 200r/min and the charge amount for 200g/L, so the ball milling time for 60 minutes is decided.The mean grain size of quartz powders are decreased vary with an increasing the ball milling rotate speed, and the rotate speed is lower, the distribution is wider, however, the rotate speed is higher, the distribution is narrower.The mean grain size of quartz powders are 11.25μm via a roller ball milling, the mean grain size of quartz powders are 7.37μm via a planetary ball milling, and the particle size distribution of quartz powders milled via a roller ball milling is wider than that of quartz powders milled via a planetary ball milling, which shows the of quartz powders milled via a roller ball milling is not more uniform than that of quartz powders milled via a planetary ball milling, the asymmetry powder is advantage for forming the high performance building materials body.


Sign in / Sign up

Export Citation Format

Share Document