Evaluation of the Influence of the Facies Genesis of the Reservoir Unit of the Fainsk Oil Field YUS1 Facility on the Effectiveness of Integrated Processing of the Injection Wells Bottomhole Formation Zone with the Application of Acid Compositions

2018 ◽  
Vol 785 ◽  
pp. 1-10
Author(s):  
Vadim Aleksandrov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Denis Drugov ◽  
Evgeniya Neelova

One of the main problems with the bottomhole formation zone processing is the choice of an acid composition adapted to the peculiarities of the geological structure of the facility. The highest technological effect of the geological and technical interventions using physicochemical formation stimulation techniques is achieved when the genesis of processed deposits is taken into account during the process of treatment planning. The research objective is to assess the impact of the reservoir units formation (genesis) characteristics on the effectiveness of integrated processing of the bottomhole formation zone of injection wells with the application of acid compositions. Using the geological and routine analysis of the development process parameters for deposits located in various facies zones, the operational benefits of the bottomhole formation zone integrated treatments in injection wells were evaluated and practical recommendations were provided.

2021 ◽  
Author(s):  
Dale Douglas Erickson ◽  
Greg Metcalf

Abstract This paper discusses the development and deployment of a specialized online and offline integrated model to simulate the CO2 (Carbon Dioxide) Injection process. There is a very high level of CO2 in an LNG development and the CO2 must be removed in order to prepare the gas to be processed into LNG. To mitigate the global warming effects of this CO2, a large portion of the CO2 Rich Stream (98% purity) is injected back into a depleted oil field. To reduce costs, carbon steel flowlines are used but this introduces a risk of internal corrosion. The presence of free water increases the internal corrosion risk, and for this reason, a predictive model discussed in this paper is designed to help operations prevent free water dropout in the network in real time. A flow management tool (FMT) is used to monitor the current state of the system and helps look at the impact of future events (startup, shutdowns etc.). The tool models the flow of the CO2 rich stream from the outlet of the compressor trains, through the network pipeline and manifolds and then into the injection wells. System behavior during steady state and transient operation is captured and analyzed to check water content and the balance of trace chemicals along with temperature and pressure throughout the network helping operators estimate corrosion rates and monitor the overall integrity of the system. The system has been running online for 24/7 for 2 years. The model has been able to match events like startup/shutdown, cooldowns and blowdowns. During these events the prediction of temperature/pressure at several locations in the field matches measured data. The model is then able to forecasts events into the future to help operations plan how they will operate the field. The tool uses a specialized thermodynamic model to predict the dropout of water in the near critical region of CO2 mixtures which includes various impurities. The model is designed to model startup and shutdown as the CO2 mixture moves across the phase boundary from liquid to gas or gas to liquid during these operations.


SPE Journal ◽  
2022 ◽  
pp. 1-18
Author(s):  
Marat Sagyndikov ◽  
Randall Seright ◽  
Sarkyt Kudaibergenov ◽  
Evgeni Ogay

Summary During a polymer flood, the field operator must be convinced that the large chemical investment is not compromised during polymer injection. Furthermore, injectivity associated with the viscous polymer solutions must not be reduced to where fluid throughput in the reservoir and oil production rates become uneconomic. Fractures with limited length and proper orientation have been theoretically argued to dramatically increase polymer injectivity and eliminate polymer mechanical degradation. This paper confirms these predictions through a combination of calculations, laboratory measurements, and field observations (including step-rate tests, pressure transient analysis, and analysis of fluid samples flowed back from injection wells and produced from offset production wells) associated with the Kalamkas oil field in Western Kazakhstan. A novel method was developed to collect samples of fluids that were back-produced from injection wells using the natural energy of a reservoir at the wellhead. This method included a special procedure and surface-equipment scheme to protect samples from oxidative degradation. Rheological measurements of back-produced polymer solutions revealed no polymer mechanical degradation for conditions at the Kalamkas oil field. An injection well pressure falloff test and a step-rate test confirmed that polymer injection occurred above the formation parting pressure. The open fracture area was high enough to ensure low flow velocity for the polymer solution (and consequently, the mechanical stability of the polymer). Compared to other laboratory and field procedures, this new method is quick, simple, cheap, and reliable. Tests also confirmed that contact with the formation rapidly depleted dissolved oxygen from the fluids—thereby promoting polymer chemical stability.


Author(s):  
Tongchun Hao ◽  
Liguo Zhong ◽  
Jianbin Liu ◽  
Xiaodong Han ◽  
Tianyin Zhu ◽  
...  

AbstractAffected by the surrounding injection and production wells, the formation near the infill adjustment well is in an abnormal pressure state, and drilling and completion operations are prone to complex situations and accidents such as leakage and overflow. The conventional shut-in method is to close all water injection wells around the adjustment well to ensure the safety of the operation, but at the same time reduce the oil field production. This paper proposes a design method for shut-in of water injection wells around adjustment wells based on injection-production data mining. This method uses water injection index and liquid productivity index as target parameters to analyze the correlation between injection and production wells. Select water injection wells with a high correlation and combine other parameters such as wellhead pressure and pressure recovery speed to design accurate adjustment schemes. Low-correlation wells do not take shut-in measures. This method was applied to 20 infill adjustment wells in the Penglai Oilfield. The correlation between injection and production wells was calculated using the data more than 500 injection wells and production wells. After a single adjustment well is drilled, the surrounding injection wells can increase the water injection volume by more than 5000 m3. This method achieves accurate adjustment for water injection wells that are high correlated with the adjustment well. Under the premise of ensuring the safety of drilling operations, the impact of drilling and completion on oilfield development is minimized, and oilfield production efficiency is improved. It has good application and promotion value.


2021 ◽  
Vol 5 (1(61)) ◽  
pp. 33-40
Author(s):  
Miсhail Lubkov ◽  
Oksana Zakharchuk ◽  
Viktoriia Dmytrenko ◽  
Oleksandr Petrash

The object of research is the filtration processes of displacement of the oil phase under the influence of an injection well in a heterogeneous porous medium. It is possible to evaluate and take into account the effect of reservoir heterogeneity on the distribution of reservoir pressure (and, consequently, on the intensity of the filtration process) using numerical modeling of filtration processes based on the piezoelectric equation. To solve the non-stationary anisotropic problem of piezoconductivity, it is proposed to apply the combined finite-element-difference method of M. Lubkov, which makes it possible to take into account the inhomogeneous distribution of permeability inside the anisotropic oil-bearing formation and at its boundaries, and to adequately calculate the distribution of reservoir pressure. The use of the combined finite-element-difference method allows to combine the advantages of the finite-element method and the finite difference method: to model geometrically complex areas, to find the value at any point of the object under study. At the same time, the use of an implicit difference scheme when finding the nodal values of the grid provides high reliability and convergence of the results. The simulation results show that the distribution of the pressure field between the production and injection wells significantly depends on their location, both in the isotropic landslide and in the anisotropic oil-bearing reservoir. It is shown that the distance between the wells of more than 1 km levels out the effectiveness of the impact of the injection well on the oil filtration process. The influence of the permeability of the oil phase in the shear direction dominates the influence of the permeability in the axial directions (affects the pressure decrease by 4–9.5 %). In the case of a landslide-isotropic reservoir, the wells should be located in the shear (diagonal) direction, which will provide the lowest level of drop in the average reservoir pressure (by 4 %). Based on the information obtained, for the effective use of anisotropic low-permeability formations, it is necessary to place production and injection wells in areas with relatively low anisotropy of the formation permeability, especially to avoid places with the presence of landslide permeability of the formation. The location of the wells is important so that, on the one hand, there is no blockage of oil from the side of reduced permeability, and on the other hand, rapid depletion of the formation from the side of increased permeability does not occur. And also the mutual exchange between the production and injection wells did not stop. When placing a system of production and injection wells in anisotropic formations of an oil field, it is necessary to carry out a systematic analysis of the surrounding anisotropy of the formations in order to place them in such a way that would ensure effective dynamics of filtration processes around these wells. Using the method used, it is possible to predict the impact of an injection well on the distribution of reservoir pressure in the reservoir.


2018 ◽  
pp. 44-51
Author(s):  
V. F. Dyagilev ◽  
S. T. Polischuk ◽  
S. A. Leontev ◽  
V. M. Spasibov

In oil field practice tracer (indicator) studies are an effective and efficient method of monitoring the state of field development. Using the multifactor mathematical analysis, the nature and intensity of the impact of injection wells on production wells have been compared with the results of injection of indicator liquids. Injection of indicator liquids was carried out along the AS1-3 formation at the Severo-Orekhovskoye oil field through the wellheads of the injection wells. The technique provides for correlation of injection in all potentially possible directions within a given range of action (usually no more than 2 rows), excluding one or more of the wells and more from the analysis. There is a direct positive correlation between evaluation data on indicator downloads and multivariate mathematical analysis data. The convergence of the results is 65%.


2018 ◽  
Vol 785 ◽  
pp. 153-158
Author(s):  
Vadim Aleksandrov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Vadim Golozubenko ◽  
Sergey Aleksandrov

Efficient development of oil reservoirs includes measures to restore and enhance the porosity and permeability properties of reservoir units that are gradually impaired during well operation. As a rule, various technologies of bottom-hole formation zone processing (BZP) of wells are used for these purposes. Special requirements to BZP technologies are applied during interventions in low-permeability reservoirs where the geological structure of reservoir units has the highest impact on the efficiency of works. In this relation, it seems interesting to study the specifics of geological structure of reservoir units in a laboratory for the efficiency of interventions using physical and chemical methods of reservoir stimulation. The research objective is to assess the efficiency of processing reservoir units with acid compositions of various concentration and type. Using laboratory experiments, physical and chemical parameters were quantitatively assessed that characterize the speed and depth of interaction between acid compositions and reservoir units.


2021 ◽  
pp. 49-59
Author(s):  
S. F. Mulyavin ◽  
R. A. Neschadimov

The oil field X belongs to the category of large in terms of initial recoverable reserves, multi-layer and complex in geological structure. The US1 object accounts for 20,3 % of the initial recoverable reserves, while the selection from the initial recoverable reserves is only 11,4 %, this makes object the most promising from the point of planning further development of the field. The analysis presented in the article is aimed at identifying problems and features of the development. During the analysis, we noted low reservoir properties of the object, high watercut of the produced products, the deterioration of the energy state of the deposits, which manifests itself in the form of a decrease in dynamic levels and a decrease in fluid flow rate. Drilling of wells, both production and injection, was carried out using hydraulic fracturing technology. Given the fact that the deposits of the US1 object are closed, lithological shielded and are characterized by the absence of an oil-water zone, the watering of wells, according to the our opinion, is associated with pulling up water from the underlying water-saturated formation as a result of the propagation of cracks obtained during hydraulic fracturing. The reason for the deterioration of the energy state is the commissioning of injection wells using hydraulic fracturing and the withdrawal of water through hydraulic fracture in the underlying formation.


2021 ◽  
Vol 7 (3) ◽  
pp. 66-74
Author(s):  
Dr. Kareem A. Alwan ◽  
Dr. Maha R. Abdulameer ◽  
Mohammed Falih

Ahdeb is one of the Iraqi oil fields, its crude characterized by medium API (22.5-28.9) and highly reservoir pressure depletion from Khasib formation due to lack of water drive. This makes it difficult to produce economic oil rates. Therefore, many water injection wells were drilled by the operators to maintain the reservoir pressure during production. In addition to that, electrical submersible pumps (ESP) were used in some productive wells. This study suggests exploitation of gas associated with oil production to be recycled to lift oil as a substitute for the ESP .The work in this study includes using PIPSIM software to build a model of four studied productive wells (AD1-11-2H, AD2-15-2H, AD4-13-3H, A4-19-1H) after choosing the suited correlation for each well. According to the statistical results, Mukherjee & Brill correlation is the best option for all wells. The use of PIPESIM software include determining artificial lift performance to determine the optimum amount of gas injected, optimum injection pressure as well as the optimum injection depth and knowing the impact of these factors on production, as well as the determination of the optimal injection conditions when water cut changes. According to the current circumstances of the wells, the depth optimized for injection is the maximum allowable depth of injection which is deeper than the packer by 100 ft and the amount of injection gas is (1.5, 1, 1, and 1) MMscf/day for wells (AD2-11-2H, AD2-15-2H, AD4-13-3H, and AD4-19-2H) sequentially and injection pressure (2050, 2050, 2050, and 2000) psi for wells (AD2-11-2H, AD2-15-2H, AD4-13-3H, and AD4-19-2H) sequentially.  


2020 ◽  
Vol 44 (3) ◽  
pp. 22-36
Author(s):  

Практика показывает, что для сварных конструкций, эксплуатируемых в условиях Крайнего Севера необходимо уделять внимание работоспособности сварных соединений при низких температурах. Металл сварных соединений в процессе воздействия обработки изменяет свои свойства, снижается ударная вязкость, образуется гетерогенная структура с большой степенью разнозернистости. Чтобы оценивать и иметь возможность правильно контролировать термическое воздействие и последствия сварочного процесса, требуется решить задачу аналитического определения ударной вязкости для всех зон сварного соединения. В настоящей статье представлен инженерный метод оценки ударной вязкости, применимый для любой зоны сварного соединения, в которой имеется острый или особый концентратор напряжений – трещина. Разработанный аналитический метод расчета ударной вязкости отражает качественную и количественную картину взаимосвязи структурно-механических характеристик и работы развития трещины в диапазоне температур 77…300 К. Предложенная схематизация зависимости критического коэффициента интенсивности напряжений от температуры позволила найти коэффициенты, характеризующие свойства материала, и выполнить расчеты изменения предела текучести и предела прочности от температуры эксплуатации. Построены графики зависимости работы развития трещины от температуры эксплуатации для сталей 15ГС и 17ГС, сравнение которых с экспериментальными данными показывает удовлетворительное согласование. Найдено, что при напряжениях предела выносливости отношение работы развития трещины к критической длине трещины постоянно, не зависит от температуры и для сталей 15ГС и 17ГС равно около 10. Ключевые слова: ударная вязкость, работа разрушения, коэффициент интенсивности напряжений, трещина, феррито-перлитная сталь, зона термического влияния. For welded structures under operation in the Far North, attention must be paid to the performance of welded joints at low temperatures. The properties of metal of welded joints are changed in the process of treatment, its toughness decreases, and a heterogeneous structure with a large range of different grain sizes is formed. In order to evaluate and be able to correctly control the thermal effect and the consequences of the welding process, it is necessary to solve the problem of analytical determination of impact strength for all zones of the welded joint. The paper presents an engineering method for evaluation of the impact strength applicable to any area of the welded joint in which there is a sharp or super sharp stress concentrator – a crack. The developed analytical method for calculating the impact strength reflects a qualitative and quantitative codependency of structural and mechanical characteristics and the process of crack development in the temperature range of 77–300 K. The proposed schematization of dependence of the critical coefficient of stress intensity on the temperature made it possible to find coefficients characterizing the properties of the material and to perform calculations of changes in yield strength and tensile strength on operating temperature. Graphs of the crack development process dependency on the operating temperature for 15ГС and 17ГС steels were constructed, and their comparison with experimental data displays satisfactory agreement. It was found that at endurance limit stresses, the ratio of the crack development process to the critical crack length is constant, non-dependent on temperature, and is equal to 10 for 15ГС and 17ГС steels. Keywords: impact strength, fracture work, stress intensity factor, crack, ferrite-pearlite steel, heat affected zone, steel tempering.


Sign in / Sign up

Export Citation Format

Share Document