Evaluation of the Physical and Mechanical Characteristics of Ion-Plasma Antifriction Coatings Based on Ti-Cu

2018 ◽  
Vol 788 ◽  
pp. 59-67 ◽  
Author(s):  
Alexander Urbahs ◽  
Konstantins Savkovs ◽  
Margarita Urbaha ◽  
Darja Andrejeva

A modern method of processing steel parts by ion-plasma sputtering in vacuum is proposed as a solution to the problem of friction and wear. An ion-plasma coating based on Ti-Cu has been developed. Such parameters as microhardness, roughness, friction coefficient of the intermetallic, conglomerate and nitride coatings have been studied

2019 ◽  
Vol 135 ◽  
pp. 01102
Author(s):  
Dmitriy Savenkov ◽  
Oleg Kirischiev ◽  
Ylia Kirischieva ◽  
Tatiana Tupolskikh ◽  
Tatiana Maltseva ◽  
...  

The article highlights the issues related to the study of physical and mechanical characteristics of bulk materials, namely internal friction coefficients in static and dynamic modes. An innovative device of the carousel type for determining the frictional characteristics of bulk materials is described, which allows to implement the tasks of practical determination of dynamic coefficients of internal friction. Presented the program, methodology and results of research on the practical study of the internal friction coefficient of typical bulk products of agricultural production in the range of linear velocities of displacement of layers from 0 to 2.79 m/s, the reliability of which is not lower than 0.878.


2019 ◽  
Vol 28 (6) ◽  
pp. 369-377
Author(s):  
Oleg V Lebedev ◽  
Olga I Bogdanova ◽  
Galina P Goncharuk ◽  
Alexander N Ozerin

The relationship between surface- and bulk-related physical and mechanical characteristics of polypropylene (PP)-based composites filled with nanodiamond soot (NDS) particles was investigated. The tribological properties of a composite were considered as surface properties. Wear and friction coefficient values were measured using a steel pin-on-composite disk testing procedure under the justified set of test parameters. Loading of NDS particles to the PP matrix resulted in a drastic increase in the composite’s wear resistance. A significant increase in friction coefficient and contact temperature was observed for the composites with NDS content below a certain value assumed to be the percolation threshold for the selected processing method and components used. After the percolation threshold is reached, the friction coefficient decreases sharply and returns to the value characteristic of a filler-free PP. The effects observed were attributed to changes in properties of polymer matrix and composite melt.


2019 ◽  
Vol 799 ◽  
pp. 15-19
Author(s):  
Darja Andrejeva ◽  
Armands Leitans ◽  
Alexanders Urbahs ◽  
Konstantins Savkovs ◽  
Margarita Urbaha

Ion-plasma antifriction coatings based on Ti-Cu were deposited by the method of ion-plasma sputtering in vacuum with the aim to gain a coating with a low coefficient of friction. To protect steel part from wear intermetallic, nitride and conglomerate coatings based on Ti-Cu with thickness of the coating h ≈ 2-5 μm obtained at different regimes of deposition. Thickness of the antifriction coatings and proportion of the chemical composition varied by deposition time, voltage and current of the magnetron, current of evaporators, pressure of gas in a vacuum chamber. This paper presents the results of the tribotest carried out on CSM Instruments pin-on-disk type tribometer. Comparing with uncoated samples microhardness and roughness of the coated samples increased two to three times, coefficient of friction of coated samples was twice lower.


2020 ◽  
pp. 22-26
Author(s):  
YURY G. IVANOV ◽  
◽  
YELENA V. MASHOSHINA ◽  
LYUDMILA N. VERLIKOVA ◽  
DARIA G. GELETIY ◽  
...  

2020 ◽  
Vol 787 (12) ◽  
pp. 63-65
Author(s):  
N.S. Sokolov

The problem of increasing the bearing capacity of the base is an relevant problem in modern geotechnical construction. When significant loads are transmitted to the base, the use of traditional technologies is not always justified. Often there is an urgent need to use non-standard ways to strengthen the bases. In many cases, the geotechnical situation is aggravated by the presence of weak underlying layers with unstable physical and mechanical characteristics in engineering-geological sections. When strengthening such bases with the help of traditional piles, the latter can get negative friction, which significantly reduces their bearing capacity on the ground, sometimes reaching zero values. This may lead to additional precipitations of the objects being constructed and constructed in the zone of geotechnical influence. The use of ERT piles in most cases successfully solves many complex geotechnical problems.


Author(s):  
G. F. Zhelezina ◽  
V. G. Bova ◽  
S. I. Voinov ◽  
A. Ch. Kan

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented. 


2021 ◽  
pp. 089270572110286
Author(s):  
Xinyue Zhang ◽  
Dekun Zhang ◽  
Kai Chen ◽  
Handong Xu ◽  
Cunao Feng

The complex movement of artificial joints is closely related to the wear mechanism of the prosthesis material, especially for the polymer prosthesis, which is sensitive to motion paths. In this paper, the “soft-soft” all-polymer of XLPE/PEEK are selected to study the influence of motion paths on the friction and wear performance. Based on the periodic characteristics of friction coefficient and wear morphology, this paper reveals the friction and wear mechanism of XLPE/peek under multi-directional motion path, and obtains the quantitative relationship between friction coefficient and the aspect ratios of “∞”-shape motion path, which is of great significance to reveal and analyze the wear mechanism of “soft” all-polymer under multi-directional motion path. The results show that the friction coefficient is affected by the motion paths and have periodicity. Morever, under the multi-directional motion paths, the wear of PEEK are mainly abrasive wear and adhesive wear due to the cross shear effect, while the wear of XLPE is mainly abrasive wear with plastic accumulation. In addition, the friction coefficient is greatly affected the aspect ratios Rs-l of “∞”-shape and loads. Meanwhile, the wear morphologies are greatly affected by the aspect ratios Rs-l of “∞”-shape, but less affected by loads.


Lubricants ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 54
Author(s):  
Valdicleide Silva Mello ◽  
Marinalva Ferreira Trajano ◽  
Ana Emilia Diniz Silva Guedes ◽  
Salete Martins Alves

Additives are essential in lubricant development, improving their performance by the formation of a protective film, thus reducing friction and wear. Some such additives are extreme pressure additives. However, due to environmental issues, their use has been questioned because their composition includes sulfur, chlorine, and phosphorus. Nanoparticles have been demonstrated to be a suitable substitute for those additives. This paper aims to make a comparison of the tribological performance of conventional EP additives and oxides nanoparticles (copper and zinc) under boundary lubrication conditions. The additives (nanoparticles, ZDDP, and sulfur) were added to mineral and synthetic oils. The lubricant tribological properties were analyzed in the tribometer HFRR (high frequency reciprocating rig), and during the test, the friction coefficient and percentual of film formation were measured. The wear was analyzed by scanning electron microscopy. The results showed that the conventional EP additives have a good performance owing to their anti-wear and small friction coefficient in both lubricant bases. The oxides nanoparticles, when used as additives, can reduce the friction more effectively than conventional additives, and displayed similar behavior to the extreme pressure additives. Thus, the oxide nanoparticles are more environmentally suitable, and they can replace EP additives adapting the lubricant to current environmental requirements.


Sign in / Sign up

Export Citation Format

Share Document