Physical Behavior of Ternary Portland Cement Mortar Mixtures Incorporating Pozzolan and Filler

2018 ◽  
Vol 789 ◽  
pp. 170-175
Author(s):  
Mauricio Arreola-Sanchez ◽  
Jorge Alberto Pacheco-Segovia ◽  
Hugo Luis Chávez García ◽  
Wilfrido Martínez-Molina ◽  
Elia Mercedes Alonso-Guzmán ◽  
...  

This work shows the results carried out by mixtures of Portland cement mortars with twoadditions: ash brick ovens (CELU) which acting as pozzolan, and ground expanded perlite (PEM)as filler. The objective of this research is to determine whether by adding a pozzolan and fillermixtures base Portland cement is possible to increase physical and mechanical behavior. There were3 mixtures: the control and 2 more: one with substitution of 7% CELU, and other with 7% CELU+5%PEM respectively, carrying out tests of normal consistency, setting, fluency, simple compression,indirect tension, ultrasonic pulse velocity and electrical resistivity at the ages of 3, 7, 14, 28 and 120days. The results were favorable in the mixture that incorporates both materials (CELU+PEM).

Author(s):  
Mauricio Arreola Sánchez ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
Elia Mercedes Alonso Guzmán ◽  
Andrés A. Torres Acosta ◽  
...  

The present research deals with the feasibility of using high-temperature pozzolans such as Natural Perlite (NP) and Expanded Perlite (EP), different dosagues of additions were made to mortars in order to perform their mechanical properties. Mortars were subjected to destructive tests in hardened state: compression, tension, flexion and adhesion strength; as well as non-destructive tests in hardened state: ultrasonic pulse velocity (UPV), electrical resistivity (ER), density (ρ) and total porosity (PT); in addition to attack by sodium sulfate at 90 days. The percentages of the substitutions were 5%, 10%, 15%, 20% and 30% by weight of Portland cement mass (PC) relative to a control mortar (cement-sand-water). With the partial replacement of the cement and according to the tests carried out, it can be observed that the problem of durability and CO2 emissions is significantly reduced and, consequently, an energy saving and a lower environmental impact are promoted.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 133 ◽  
Author(s):  
Esteban Estévez ◽  
Domingo Alfonso Martín ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

The purpose of this paper is to establish some correlations between the main technical parameter with regard to the cement-based materials technology, the 28-day compressive strength, and ultrasonic pulse velocity of standard mortar samples cured at three different conditions—(i) under water at 22 °C; (ii) climatic chamber at 95% RH and 22 °C; (iii) lab ambient, 50% RH, and 22 °C—and after five curing periods of 1, 2, 7, 14, and 28 days. Good correlations for each curing conditions were obtained. All the positive linear relationships showed better R2 than exponential ones. These findings may promote the use of ultrasonic pulse velocity for the estimation of the 28-day compressive strength of standard Portland cement samples within the factory internal quality control.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Hongxia Qiao ◽  
Desire Ndahirwa ◽  
Yuanke Li ◽  
Jinke Liang

The research gap on the feasibility of basalt rock powder (BRP) and superfine sand (SS) in preparation of cement mortar is significant. Thisstudy examines probable changes occurred in the modified cement mortar due to incorporation of certain quantity of basalt rock powder andsuperfine sand in mixture proportion. The cement mortar included Portland cement, artificial sand and water as principal mixture constituents. Then, basalt rock powder and superfine sand were added as partial replacement materials for Portland cement and artificial sand respectively. Therefore, replacement percentages were 10%, 15%, 20%, 25% and 30% when the basalt rock powder replaced Portland cement and in case the artificial sand was replaced by superfine sand, 10%, 20%, 30%, 40% and 50%. Then, the strength indexes such as flexural strength, compressive strength, ultrasonic pulse velocity and dynamic elastic modulus were investigated. The results show that the presence of basalt rock powder in mixture proportion increased the flexural and compressive strengths of cement mortar however the cement mortar that contained superfine sand illustrated inadequate mechanical performance as flexural and compressive strengths decreased remarkably. Moreover, when basalt rock powder and superfine sand were included together in mixture proportion, the cement mortar’s mechanical performance declined compared to that of the reference cement mortar. Despite the fact that basalt rock powder and superfine sand weakened the cement mortar’s mechanical properties, it was found that they can be added into the cement mortar as partial replacement of Portland cement and artificial sand in the following ratios: from 10% to 25% when basalt rock powder replaces Portland cement and from 10% to 20% when artificial sand is replaced by superfine sand.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Byung Wan Jo ◽  
Muhammad Ali Sikandar ◽  
Sumit Chakraborty ◽  
Zafar Baloch

We investigated the effects of hydrogen-rich water (HRW) on the strength and durability of Portland cement mortars. We comparatively assessed the performances of HRW-based mortars (HWMs) with respect to cement mortars fabricated from control water (CWM). The results indicate that the use of HRW significantly improves the compressive, flexural, and splitting tensile strength of mortars at both the early and later ages of curing. Durability was assessed in terms of capillary absorption, ultrasonic pulse velocity (UPV), dynamic elastic modulus (DEM), and electrical resistivity (ER). We attribute the generally improved mechanical and durability properties of HWMs to the formation of more cement hydrates with fewer voids in the hydrogen-rich environment. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) analyses, we deduce that the use of HRW in Portland cement mortars produces a more compact, dense, and durable microstructure with fewer voids due to a higher degree of hydration.


2021 ◽  
Vol 877 (1) ◽  
pp. 012049
Author(s):  
Ali Abdulridha ◽  
Saif S. AlQuzweeni ◽  
Rasha S. AlKizwini ◽  
Zahra A. Saleh ◽  
K. S. Hashem

Abstract Various experimental studies have highlighted the negative consequences of Portland cement on health and the environment, such as toxic emissions and alkaline sewage. The development of environmentally acceptable substitutes for cement is thus one of the objectives of current investigations. The proposed environmental alternatives to cement, nevertheless, might have detrimental impacts on the concrete’s characteristics. This investigation intends to study the suitability as alternatives to cement in cement mortar, using industrial wastes like silica fume and cement kiln dust. As a replacement for cement, the cement mortars developed in this research continue from 0% to 60% silica fume and cement kiln dust. Ultrasonic pulse velocity tests at 1 to 4 weeks of age were conducted on hardened specimens. The findings showed that a low reduction in the pulse velocity resulted from high proportions of silica fume and cement kiln dust replacements, whereas an improvement in the characteristics of the mortars with low replacement ratios. Using low kiln dust and silica fume of 20 to 40%, the durability of mortars may increase.


2017 ◽  
Vol 902 ◽  
pp. 9-13
Author(s):  
Rosalía Ruiz Ruiz ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
Judith Alejandra Velázquez Perez

Cement industry is responsible of 5-7% of CO2 emissions to the atmosphere. This is preoccupant because this is one of the greenhouse effect gases which cause global warming. Pozzolanic material incorporation in cement mortars elaboration represents a good alternative to partially substitute cement, since its chemical composition could contribute to improvement of its durability and mechanical characteristics. In this research, mortars with pozzolanic substitutions are evaluated through non-destructive tests as: capillary absorption, electrical resistivity, and ultrasonic pulse velocity to the age of 1000 days. The results suggested that the incorporation of pozzolanic material as partial substitutes of Portland cement increases the mortars properties mainly in substitutions of CBC 20%, PN 10, and 30%.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1562 ◽  
Author(s):  
Jurgita Malaiškienė ◽  
Olga Kizinievič ◽  
Viktor Kizinievič

The paper analyses the properties (chemical and mineral composition, microstructure, density, etc.) of recycled tannery sludge (TS) and the possibilities for using it in cement mortar mixture. Mortar specimens containing 3–12% of tannery sludge by weight of cement and 3–9% of tannery sludge by weight of sand were tested. Flowability, density, ultrasonic pulse velocity (UPV), flexural and compressive strength, water absorption and sorptivity of the mortar were analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis of tannery sludge and mortar are presented. The tests revealed that replacement of 6% of cement with tannery sludge in the mix increased flexural and compressive strength and UPV values, whereas water absorption decreased. SEM and XRD analysis revealed that specimens with tannery sludge contained lower amounts of ettringite and higher amounts of portlandite; the obtained structure was denser and contained more calcium hydrosilicates (C-S-H). Chromium leaching values in cement mortars were found not to exceed the limit values set forth in Directive 2003/33/EC.


2018 ◽  
Vol 789 ◽  
pp. 150-154
Author(s):  
Victor Hugo Blancas-Herrera ◽  
Jorge Alberto Pacheco-Segovia ◽  
Wilfrido Martínez-Molina ◽  
Hugo Luis Chávez García ◽  
Mauricio Arreola-Sanchez ◽  
...  

The use of dehydrated fibres of cactus, Opuntia ficus-indica (FN), and starch (corn starch,Zea Mays (MZ)) as partial substitutes for the total mass of Portland Cement (CP) in the making ofmortar, aims at modifying its physical and mechanical properties, reducing the amount of cementand the CO2 emission. Four mixtures of CP mortar were designed incorporating a superplasticizeradditive with a water/cement weight ratio of 0.68. To compare the results, there was a controlmortar; two mixtures with partial substitutions using fibres of FN, 0.5 and 1.5% (in weight of CP)respectively; and a substituted mixture with 2% of corn starch plus 0.5% of cactus fibre (MZ - FN).The test age was 180 days. The specimens were subjected to an accelerated attack of sodiumsulphate, quantifying the electric resistivity (ER) and the ultrasonic pulse velocity (UPV). Theresults indicate that the substitution of the materials, remarkably densify the cement matrix, whichresults in the improvement of the physical properties and the durability.


Sign in / Sign up

Export Citation Format

Share Document