scholarly journals Ultrasonic Pulse Velocity—Compressive Strength Relationship for Portland Cement Mortars Cured at Different Conditions

Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 133 ◽  
Author(s):  
Esteban Estévez ◽  
Domingo Alfonso Martín ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

The purpose of this paper is to establish some correlations between the main technical parameter with regard to the cement-based materials technology, the 28-day compressive strength, and ultrasonic pulse velocity of standard mortar samples cured at three different conditions—(i) under water at 22 °C; (ii) climatic chamber at 95% RH and 22 °C; (iii) lab ambient, 50% RH, and 22 °C—and after five curing periods of 1, 2, 7, 14, and 28 days. Good correlations for each curing conditions were obtained. All the positive linear relationships showed better R2 than exponential ones. These findings may promote the use of ultrasonic pulse velocity for the estimation of the 28-day compressive strength of standard Portland cement samples within the factory internal quality control.

Author(s):  
Adeyemi Adesina ◽  
Jonathan Cercel ◽  
Sreekanta Das

This study presents the experimental investigation of the effect of curing media on the properties of mortar mixtures made with sodium carbonate activated slag-glass powder as a binder. Slag and glass powder were used at an equal percentage as the aluminosilicate precursor and the binary blend was activated with sodium carbonate. The compressive strength and ultrasonic pulse velocity of the mixtures cured in different conditions were investigated. The curing conditions used in this study are dry, moist, and submerged curing. Microstructural investigations were also carried out to understand the microstructural properties of the mixtures exposed to these curing conditions. Results from this study showed that moist curing is the most effective curing method for mortar made with sodium carbonate alkali-activated slag-glass powder as a binder. Microstructural evaluations further confirm the strength results as mortar samples cured in a moist condition exhibited a denser microstructure.


2018 ◽  
Vol 789 ◽  
pp. 170-175
Author(s):  
Mauricio Arreola-Sanchez ◽  
Jorge Alberto Pacheco-Segovia ◽  
Hugo Luis Chávez García ◽  
Wilfrido Martínez-Molina ◽  
Elia Mercedes Alonso-Guzmán ◽  
...  

This work shows the results carried out by mixtures of Portland cement mortars with twoadditions: ash brick ovens (CELU) which acting as pozzolan, and ground expanded perlite (PEM)as filler. The objective of this research is to determine whether by adding a pozzolan and fillermixtures base Portland cement is possible to increase physical and mechanical behavior. There were3 mixtures: the control and 2 more: one with substitution of 7% CELU, and other with 7% CELU+5%PEM respectively, carrying out tests of normal consistency, setting, fluency, simple compression,indirect tension, ultrasonic pulse velocity and electrical resistivity at the ages of 3, 7, 14, 28 and 120days. The results were favorable in the mixture that incorporates both materials (CELU+PEM).


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Byung Wan Jo ◽  
Muhammad Ali Sikandar ◽  
Sumit Chakraborty ◽  
Zafar Baloch

We investigated the effects of hydrogen-rich water (HRW) on the strength and durability of Portland cement mortars. We comparatively assessed the performances of HRW-based mortars (HWMs) with respect to cement mortars fabricated from control water (CWM). The results indicate that the use of HRW significantly improves the compressive, flexural, and splitting tensile strength of mortars at both the early and later ages of curing. Durability was assessed in terms of capillary absorption, ultrasonic pulse velocity (UPV), dynamic elastic modulus (DEM), and electrical resistivity (ER). We attribute the generally improved mechanical and durability properties of HWMs to the formation of more cement hydrates with fewer voids in the hydrogen-rich environment. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) analyses, we deduce that the use of HRW in Portland cement mortars produces a more compact, dense, and durable microstructure with fewer voids due to a higher degree of hydration.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2476
Author(s):  
Geuntae Hong ◽  
Sangwoo Oh ◽  
Seongcheol Choi ◽  
Won-Jong Chin ◽  
Young-Jin Kim ◽  
...  

The effect of the replacement rate of silica fume (SF) on the correlation between the compressive strength and ultrasonic pulse velocity (UPV) of cement mortar was experimentally analyzed. Specimens were fabricated with different replacement rates of SF, the compressive strength and UPV were measured, and isothermal calorimetry and mercury intrusion porosimetry tests were conducted to analyze the effects of replacement on the hydration kinetics and microstructures on these properties. Field emission scanning electron microscopy analysis was performed to observe SF particles and microstructure. The substitution of SF changed the cement mortar’s hydration kinetics and microstructures, resulting in different strengths and UPVs depending on the replacement rate. The compressive strength and UPV for cement mortars blended with SF also showed a different exponential relationship depending on the SF replacement rate.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 13 (4) ◽  
pp. 1881
Author(s):  
Mei-Yu Xuan ◽  
Yi Han ◽  
Xiao-Yong Wang

This study examines the hydration–mechanical–autogenous shrinkage–durability–sustainability properties of ternary composites with limestone filler (LF) and ground-granulated blast furnace slag (BFS). Four mixtures were prepared with a water/binder ratio of 0.3 and different replacement ratios varying from 0 to 45%. Multiple experimental studies were performed at various ages. The experimental results are summarized as follows: (1) As the replacement levels increased, compressive strength and autogenous shrinkage (AS) decreased, and this relationship was linear. (2) As the replacement levels increased, cumulative hydration heat decreased. At the age of 3 and 7 days, there was a linear relationship between compressive strength and cumulative hydration heat. (3) Out of all mixtures, the ultrasonic pulse velocity (UPV) and electrical resistivity exhibited a rapid increase in the early stages and tended to slow down in the latter stages. There was a crossover of UPV among various specimens. In the later stages, the electrical resistivity of ternary composite specimens was higher than plain specimens. (4) X-ray diffraction (XRD) results showed that LF and BFS have a synergistic effect. (5) With increasing replacement ratios, the CO2 emissions per unit strength reduced, indicating the sustainability of ternary composites.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


Sign in / Sign up

Export Citation Format

Share Document