scholarly journals Methods to Improve Energy Conversion Efficiency of Dielectric Elastomer Generators

2019 ◽  
Vol 804 ◽  
pp. 63-67
Author(s):  
Heng Tong Cheng ◽  
Zhen Qiang Song ◽  
Shijie Zhu ◽  
Kazuhiro Ohyama

Dielectric elastomer generators (DEGs) are based on the electromechanical response of the dielectric elastomer film sandwiched between the compliant electrodes on each side, which are capable of converting mechanical energy from diverse sources (e.g, ocean wave) into electrical energy. In essence, DEG is a voltage up-converter using mechanical energy to increase the electrical energy of the charge on a soft capacitor. We evaluated the effect of input voltage and the pre-stretch ratios on energy conversion efficiency of DEG. With a power supply of 2.2kV and pre-stretch ratio of 2, the maximum net electrical energy density and energy conversion efficiency in a single harvesting cycle were measured to be 413 J/kg and 15.8%, respectively. The experimental results showed that, with the higher input voltage and the larger stretch ratio range, higher the energy conversion performance of DEG can be achieved.

2021 ◽  
Author(s):  
Xingbao Huang ◽  
Xiao Zhang ◽  
Bintang Yang

Abstract This paper introduces an energy conversion inspired vibration control methodology and presents a representative prototype of tunable bi-stable energy converters. This work is concerned on improving the vibration absorption and energy conversion performance of tunable bi-stable clustered energy conversion inspired dynamic vibration absorbers (EC-DVAs). The deterministic parametric analysis of the energy transfer performance of clustered EC-DVAs is conducted. Firstly, nonlinear vibration behaviors including transient energy transfer and snap-through motions are studied, and then effects of EC-DVA number on vibration control is investigated. Furthermore, the optimal computation based on adjusting the length ratio (namely bi-stable potential barrier height) is developed to obtain the maximum energy conversion efficiency of clustered EC-DVAs and the minimum residual kinetic energy of the primary system considering different number of clustered EC-DVAs. Moreover, the optimal calculation based on optimal EC-DVA number is also developed to achieve the most excellent vibration absorption and energy conversion performance. Finally, the optimal calculation based on optimal mass ratio is conducted. Numerical simulations show that when the total mass ratio is constant the snap-through motions of each EC-DVA depend remarkably on EC-DVA number; the energy conversion efficiency and residual kinetic energy after dynamic length ratio optimization is independent on ambient input energy and EC-DVA number; The energy conversion efficiency and vibration absorption performance based on optimal EC-DVA number maintain high efficiency and stable when the ambient input energy or the potential energy of clustered EC-DVAs varies. The optimal mass ratio is large when the system’s potential barrier is too large and the ambient input energy is small. Therefore, the presented tunable bi-stable system of clustered EC-DVAs with appropriate bi-stable potential function and proposed optimization strategies is a potential alternative for vibration control of mechanical components exposed to varying impulses.


2018 ◽  
Vol 192 ◽  
pp. 01032
Author(s):  
Zhen-Qiang Song ◽  
Sriyuttakrai Sathin ◽  
Wei Li ◽  
Kazuhiro Ohyama ◽  
ShiJie Zhu

The dielectric elastomer generator (VHB 4905, 3M) with diaphragm configuration was investigated with the constant-voltage harvesting scheme in order to investigate its energy harvesting ability. The maximum energy density and energy conversion efficiency is measured to be 65 J/kg and 5.7%, respectively. The relatively low efficiency indicates that higher energy conversion efficiency is impeded by the viscosity of the acrylic elastomer, suggesting that higher conversion efficiency with new low-viscosity elastomer should be available.


2014 ◽  
Vol 16 (37) ◽  
pp. 20120-20126 ◽  
Author(s):  
Yaniv Gelbstein ◽  
Joseph Davidow

Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for an efficient implementation of thermoelectric devices in automotive vehicles, for utilizing the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels.


2021 ◽  
Vol 13 (17) ◽  
pp. 9803
Author(s):  
Ji Woo Nam ◽  
Yong Jun Sung ◽  
Seong Wook Cho

The InWave wave energy converter (WEC), which is three-tether WEC type, absorbs wave energy via moored cylindrical buoys with three ropes connected to a terrestrial power take-off (PTO) through a subsea pulley. In this study, a simulation study was conducted to select a suitable PTO when designing a three-tether WEC. The mechanical PTO transfers energy from the buoy to the generator using a gearbox, whereas the hydraulic PTO uses a hydraulic pump, an accumulator, and a hydraulic motor to convert mechanical energy into electrical energy. The hydraulic PTO has a lower energy conversion efficiency than that of the mechanical PTO owing to losses resulting from pipe friction and the individual efficiencies of the hydraulic pumps and motors. However, the efficiencies mentioned above are not the efficiency of the whole system. The efficiency of the whole system should be analyzed considering the tension of the rope and the efficiency of the generator. In this study, the energy conversion efficiencies of the InWave WEC installed the mechanical and hydraulic PTO devices are compared, and their behaviors are analyzed through numerical simulations. The mechanics of mechanical and hydraulic PTO applied to InWave are mathematically expressed, and the issues of the elements constituting the PTO are explained. Finally, factors to consider for PTO selection are presented.


Aerospace ◽  
2003 ◽  
Author(s):  
Mostafa M. Abdalla ◽  
Mary Frecker ◽  
Zafer Gu¨rdal ◽  
Terrence Johnson ◽  
Douglas K. Lindner

Combined optimization of a compliant mechanism and a piezoelectric stack actuator for maximum energy conversion efficiency is considered. The paper presents a system level analysis in which the actuator and the compliant mechanism are mathematically described as linear two-port systems. The combination of stack and compliant mechanism is used to drive a structure, modeled as a mass-spring system. The analysis assumes all components to be free from dissipation, and the piezoelectric stack is driven by an ideal voltage source. Energy conversion efficiency is defined as the ratio of the output mechanical energy to the input electric energy. Theoretical bounds on the system efficiency are obtained. It is shown that the stack actuator can be optimized separately and matched to the specified structure and an optimally designed complaint mechanism. The optimization problem for the compliant mechanism is formulated to maximize a weighted objective function of energy efficiency and stroke amplification. Optimization results are presented for ground structures modeled using frame elements.


Author(s):  
Tian-Bing Xu ◽  
Lei Zuo

Abstract A “33” mode (mechanical stress being in parallel to the electric dipole moment direction) piezoelectric lead zirconate titanate (PZT) multilayer stack-based piezoelectric flextensional energy harvester (PZT-Stacked-FEH) has been developed. Interdisciplinary approaches had been taken to increase the performance of the PZT-Stacked-FEH. First, an elastic flextensional frame for force amplification has been optimally designed to capture more mechanical energy with high energy transition efficiency into the PZT-Stacked-FEH. Second, a “33” mode piezoelectric PZT multilayer stack (PZT-Stack) was employed instead of “31” mode (stress being in perpendicular to the dipole moment direction) single layer piezoelectric component to increase mechanical to electrical energy conversion efficiency and to generate more electrical charges in order to improve energy storage efficiency. With these approaches, the PZT-Stacked-FEH demonstrates excellent performance: 1) a 19% of overall mechanical to electrical energy conversion efficiency was achieved, 2) 48.6 times more mechanical energy was transited into PZT-Stacked-FEH and 26.5 times more electrical power was generated than directly applying force to the PZT-stack, and 3) energy storage efficiency was significantly improved. In this paper, we are focusing on the investigations for the off-resonance mode performance of the PZT-Stacked-FEH through theoretical modeling, prototype development, and experimental studies. A prototype PZT-Stacked-FEH of weight 18 grams was able to generate 666 mW electrical power under 52 Nrms force at 250 Hz, which is much lower than the resonant frequency (936 Hz). At this condition, a 6,600 μF super-capacitor was charged from 0 to 7 V in 1.6 second, at an average rate of 100 mW. Furthermore, 70% of generated appear electrical powers were delivered to matched resistive loads in the investigated regime of frequencies. Finally, the experimental results matched well with theoretical predictions which verified the developed theoretical models.


2019 ◽  
Vol 21 (42) ◽  
pp. 23283-23300 ◽  
Author(s):  
Partha Maity ◽  
Hirendra N. Ghosh

Different processes are involved in a quantum dot sensitized solar cell (QDSC). This article reviews the probable ways to extend charge separation in colloidal nanocrystals for the elevation of solar to electrical energy conversion efficiency in QDSCs.


Sign in / Sign up

Export Citation Format

Share Document