Detection of Escherichia coli O157:H7 with Antibody Conjugated Amino-Functionalized Graphene Quantum Dots as Immunofluorescence Probes

2019 ◽  
Vol 807 ◽  
pp. 151-158
Author(s):  
Xiao Zhan Yang ◽  
Wen Lin Feng ◽  
Gao Chen ◽  
Hong Feng Guo ◽  
Dao Yuan Wang

Escherichia coli O157: H7 (E. coli O157: H7) is a foodborne pathogenic bacterium which can cause fever, diarrhoea and vomiting in humans. Thus, a rapid, simple, and specific bioprobe for pathogen detection in contaminated foods has been attracted more and more attention. In this work, the strong fluorescent amino-functionalized graphene quantum dots (af-GQDs) were prepared by hydrothermal method. The microtopographic height, surface morphology and spectroscopic properties of af-GQDs are characterized by the high resolution transmission electron microscope (HRTEM), atomic force microscope (AFM), UV-vis, fluorescence, Raman spectroscopic techniques. All the results showed that the af-GQDs can be effectively applied in the preparation of biocompatible immunofluorescence probe and in the detection of E. coli O157: H7. The minimum detection limit is 100 cfu/mL. It is a simple, rapid, sensitive, low-cost and easy to be popularized method, which provides a feasible way to monitor E. coli O157: H7 in food safety.

2017 ◽  
Vol 12 (6) ◽  
pp. 4089-4096
Author(s):  
Ashkan Shomali ◽  
Hassan Valizadeh

Carboxyl and nitrite functionalized graphene quantum dots (CNGQDs) was used for the efficient synthesis of α-oximinoketones under free mineral acid conditions at room temperature. CNGQDs was prepared via o-nitrozation of carboxyl and hydroxyl graphene quantum dots (CHGQDs) and used as a nitrosonium source and also as an efficient acidic catalyst for the synthesis of α-oximinoketones. The structure of the catalyst was characterized by FT-IR, XRD, TGA and photoluminescence techniques. The structures of the synthesized products were confirmed by FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Stability and recyclability of the prepared homogeneous catalyst was studied in details. Reaction times and yields of the products were compared with previous reported methods resulting high yields and also shorter reaction times.


2021 ◽  
Vol 33 (11) ◽  
pp. 2662-2666
Author(s):  
Amnuay Noypha ◽  
Paweena Porrawatkul ◽  
Nongyao Teppaya ◽  
Parintip Rattanaburi ◽  
Saksit Chanthai ◽  
...  

Borassus flabellifer vinegar–graphene quantum dots (BFV-GQDs) were successfully synthesized using a pyrolysis method with Borassus flabellifer vinegar (BFV) as the precursor. All the samples were characterized using ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activities of BFV-GQDs against strains of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were determined using the agar well diffusion method for preliminary screening, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth macro-dilution method. The zones of inhibition were compared with those of citric acid–graphene quantum dots (CA-GQDs). It was observed that the synthesized BFV-GQDs demonstrated excellent antibacterial activity against Staphylococcus aureus (82.3%) and good antibacterial activity against Escherichia coli (73.3%). The MIC of BFV-GQDs against E. coli was 6.25 mg/mL and S. aureus was 12.5 mg/mL, whereas the MBC of BFV-GQDs against E. coli was 12.5 mg/mL and S. aureus was 25.0 mg/mL.


RSC Advances ◽  
2015 ◽  
Vol 5 (118) ◽  
pp. 97598-97603 ◽  
Author(s):  
Tran Van Tam ◽  
Soon Ho Hong ◽  
Won Mook Choi

We synthesized cystenine–functionalized graphene quantum dots (cys–GQDs) by a simple, low cost and environmentally friendly method and demonstrated them as highly sensitive and selective fluorescence probes for Hg2+ detection.


2021 ◽  
Author(s):  
Xu Dan ◽  
Ruiyi Li ◽  
Qinsheng Wang ◽  
Yongqiang Yang ◽  
Haiyan Zhu ◽  
...  

The paper reports the synthesis of nickel-silver-graphene quantum dot-graphene hybrid. Histidine-functionalized graphene quantum dots (His-GQDs) were bonded to graphene oxide (GO) and then combined with Ni2+ and Ag+ to form...


2017 ◽  
Vol 28 (10) ◽  
pp. 2608-2619 ◽  
Author(s):  
Chenjie Yao ◽  
Yusong Tu ◽  
Lin Ding ◽  
Chenchen Li ◽  
Jiao Wang ◽  
...  

2021 ◽  
Author(s):  
Md. Farhan Naseh ◽  
Neelam Singh ◽  
Jamilur R. Ansari ◽  
Ashavani Kumar ◽  
Tapan Sarkar ◽  
...  

Abstract Here, we report functionalized graphene quantum dots (GQDs) for the optical detection of arsenic at room temperature. GQDs with the fluorescence of three fundamental colors (red, green, and blue) were synthesized and functionally capped with L-cysteine (L-cys) to impart selectively towards As (III) by exploiting the affinity of L-cys towards arsenite. The optical characterization of GQDs was carried out using UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectrometry and the structural characterizations were performed using transmission electron microscopy. The fluorescence results showed instantaneous quenching in intensity when the GQDs came in contact with As (III) for all test concentrations over a range from 0.025 ppb to 25 ppb, which covers the permissible limit of arsenic in drinking water. The experimental results suggested excellent sensitivity and selectivity towards As (III).


2017 ◽  
Vol 43 (12) ◽  
pp. 7457-7470 ◽  
Author(s):  
Mohammad Hassan Amini ◽  
Farnoush Faridbod ◽  
Mohammad Reza Ganjali ◽  
Parviz Norouzi

Optik ◽  
2019 ◽  
Vol 178 ◽  
pp. 802-812 ◽  
Author(s):  
Nur Syahira Md Ramdzan ◽  
Yap Wing Fen ◽  
Nur Alia Sheh Omar ◽  
Nur Ain Asyiqin Anas ◽  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document