scholarly journals Numerical and Theoretical Models for NFRCM-Strengthened Masonry

2019 ◽  
Vol 817 ◽  
pp. 44-49
Author(s):  
Claudia Brito de Carvalho Bello ◽  
Daniele Baraldi ◽  
Giosuè Boscato ◽  
Antonella Cecchi ◽  
Olimpia Mazzarella ◽  
...  

The shear behavior of masonry strengthened with natural fabric-reinforced cementitious matrix (NFRCM-strengthened masonry) is investigated through two different numerical models: a multi-layer model considering masonry and reinforcement as different materials and a multi-step homogenized model, where reinforced masonry is considered as a whole. The approaches are compared by performing nonlinear numerical pushover analysis with an increasing shear action applied to the panels. The parametric analysis shows the capacity and limits of both continuous diffused models – defined as a multi-or a single layer - to represent reinforced masonry in-plane behavior.

2016 ◽  
Vol 846 ◽  
pp. 270-275
Author(s):  
Sarah Barns ◽  
Emilie Sauret ◽  
Suvash Saha ◽  
Robert Flower ◽  
Yuan Tong Gu

The red blood cell (RBC) membrane consists of a lipid bilayer and spectrin-based cytoskeleton, which enclose haemoglobin-rich fluid. Numerical models of RBCs typically integrate the two membrane components into a single layer, preventing investigation of bilayer-cytoskeleton interaction. To address this constraint, a new RBC model which considers the bilayer and cytoskeleton separately is developed using the discrete element method (DEM). This is completed in 2D as a proof-of-concept, with an extension to 3D planned in the future. Resting RBC morphology predicted by the two-layer model is compared to an equivalent and well-established composite (one-layer) model with excellent agreement for critical cell dimensions. A parametric study is performed where area reduction ratio and spring constants are varied. It is found that predicted resting geometry is relatively insensitive to changes in spring stiffness, but a shape variation is observed for reduction ratio changes as expected.


2021 ◽  
pp. 1-22
Author(s):  
Zhenkun Lin ◽  
Serife Tol

Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on the Snell's law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface.


2020 ◽  
Vol 11 (1) ◽  
pp. 278
Author(s):  
Ivan Hafner ◽  
Anđelko Vlašić ◽  
Tomislav Kišiček ◽  
Tvrtko Renić

Horizontal loads such as earthquake and wind are considered dominant loads for the design of tall buildings. One of the most efficient structural systems in this regard is the tube structural system. Even though such systems have a high resistance when it comes to horizontal loads, the shear lag effect that is characterized by an incomplete and uneven activation of vertical elements may cause a series of problems such as the deformation of internal panels and secondary structural elements, which cumulatively grow with the height of the building. In this paper, the shear lag effect in a typical tube structure will be observed and analyzed on a series of different numerical models. A parametric analysis will be conducted with a great number of variations in the structural elements and building layout, for the purpose of giving recommendations for an optimal design of a tube structural system.


Author(s):  
Fayu Wang ◽  
Nicholas Kyriakides ◽  
Christis Chrysostomou ◽  
Eleftherios Eleftheriou ◽  
Renos Votsis ◽  
...  

AbstractFabric reinforced cementitious matrix (FRCM) composites, also known as textile reinforced mortars (TRM), an inorganic matrix constituting fibre fabrics and cement-based mortar, are becoming a widely used composite material in Europe for upgrading the seismic resistance of existing reinforced concrete (RC) frame buildings. One way of providing seismic resistance upgrading is through the application of the proposed FRCM system on existing masonry infill walls to increase their stiffness and integrity. To examine the effectiveness of this application, the bond characteristics achieved between (a) the matrix and the masonry substrate and (b) the fabric and the matrix need to be determined. A series of experiments including 23 material performance tests, 15 direct tensile tests of dry fabric and composites, and 30 shear bond tests between the matrix and brick masonry, were carried out to investigate the fabric-to-matrix and matrix-to-substrate bond behaviour. In addition, different arrangements of extruded polystyrene (XPS) plates were applied to the FRCM to test the shear bond capacity of this insulation system when used on a large-scale wall.


2018 ◽  
Vol 30 (1) ◽  
pp. 45-62 ◽  
Author(s):  
Eliana Bortot

Dielectric elastomers are an emerging class of highly deformable electro-active materials employed for electromechanical transduction technology. For practical applications, the design of such transducers requires a model accounting for insulation of the active membrane, non-perfectly compliant behavior of the electrodes, or interaction of the transducer with a soft actuated body. To this end, a three-layer model, in which the active membrane is embedded between two soft passive layers, can be formulated. In this article, the theory of non-linear electro-elasticity for heterogeneous soft dielectrics is used to investigate the electromechanical response of multilayer electro-active tubes—formed either by the active membrane only ( single-layer tube) or by the coated active membrane ( multilayer tube). Numerical results showing the influence of the mechanical and the geometrical properties of the soft coating layers on the electromechanical response of the active membrane are presented for different constraint conditions.


2017 ◽  
Vol 127 ◽  
pp. 175-195 ◽  
Author(s):  
Carmelo Caggegi ◽  
Francesca Giulia Carozzi ◽  
Stefano De Santis ◽  
Francesco Fabbrocino ◽  
Francesco Focacci ◽  
...  

2011 ◽  
Vol 15 (9) ◽  
pp. 3017-3031
Author(s):  
P. Trambauer ◽  
J. Nonner ◽  
J. Heijkers ◽  
S. Uhlenbrook

Abstract. The groundwater flow models currently used in the western part of The Netherlands and in other similar peaty areas are thought to be a too simplified representation of the hydrological reality. One of the reasons is that, due to the schematization of the subsoil, its heterogeneity cannot be represented adequately. Moreover, the applicability of Darcy's law in these types of soils has been questioned, but this law forms the basis of most groundwater flow models. With the purpose of assessing the typical heterogeneity of the subsoil and to verify the applicability of Darcy's law, geo-hydrological fieldwork was completed at an experimental field within a research area in the western part of The Netherlands. The assessments were carried out for the so-called Complex Confining Layer (CCL), which is the Holocene peaty to clayey layer overlying Pleistocene sandy deposits. Borehole drilling through the CCL with a hand auger was completed and revealed the typical heterogeneous character of this layer, showing a dominance of muddy, humified peat which is alternated with fresher peat and clay. Slug tests were carried out to study the applicability of Darcy's law, given that previous studies suggested its non-validity for humified peat soils due to a variable horizontal hydraulic conductivity Kh with head differences. For higher humification degrees, the experiments indeed suggested a variable Kh, but this appeared to be the result of the inappropriate use of steady-state formulae for transient experiments in peaty environments. The muddy peat sampled has a rather plastic nature, and the high compressibility of this material leads to transient behavior. However, using transient formulae, the slug tests conducted for different initial groundwater heads showed that there was hardly any evidence of a variation of the hydraulic conductivity with the applied head differences. Therefore, Darcy's law can be used for typical peat soils present in The Netherlands. The heterogeneity of the subsoil and the apparent applicability of Darcy's law were taken into account for the detailed heterogeneous model that was prepared for the research area. A MODFLOW model consisting of 13 layers in which 4 layers represent the heterogeneous CCL was set up for an average year, assuming steady-state conditions; and for the winter of 2009 to 2010, adopting transient conditions. The transient model was extended to simulate for longer periods with the objective of visualizing the flow paths through the CCL. The results from these models were compared with a 10 layer model, whereby the CCL is represented by a single layer assuming homogeneity. From the comparison of the two model types, the conclusion could be drawn that a single layer schematization of the CCL produces flowpath patterns which are not the same but still quite similar to a 4 layer representation of the CCL. However, the single layer schematization results in a considerable underestimation of the flow velocity, and subsequently a longer travel time, through the CCL. Therefore, a single layer model of the CCL seems quite appropriate to represent the general flow behavior of the shallow groundwater system, but would be inappropriate for transport modeling through the CCL.


2018 ◽  
Vol 22 (5) ◽  
pp. 1612-1634 ◽  
Author(s):  
J Jelovica ◽  
J Romanoff

Modeling a periodic structure as a homogeneous continuum allows for an effective structural analysis. This approach represents a sandwich panel as a two-dimensional plate of equivalent stiffness. Known as the equivalent single-layer, the method is used here to analyze bifurcation buckling of three types of sandwich panels with unidirectional stiffeners in the core: truss-core, web-core and corrugated-core panels made of an isotropic material. The transverse shear stiffnesses of these panels can differ by several orders of magnitude, which cause incorrect buckling analysis when using the equivalent single-layer model with the first-order shear deformation theory. Analytical solution of the problem predicts critical buckling loads that feature infinite number of half-waves in the direction perpendicular to the stiffeners. Finite element model also predicts buckling modes that have non-physical, saw-tooth shape with infinite curvature at nodes. However, such unrealistic behavior is not observed when using detailed three-dimensional finite element models. The error in the prediction of the critical buckling load is up to 85% for the cases considered here. The correction of the equivalent single-layer model is proposed by modeling the thick-faces effect to ensure finite curvature. This is performed in the finite element setting by introducing an additional plate with tied deflections to the equivalent single-layer plate. The extra plate is represented with bending and transverse shear stiffness of the face plates. As a result, global buckling is predicted accurately. Guidelines are proposed to identify the sandwich panels where ordinary model is incorrect. Truss-core and web-core sandwich panels need the correction. Corrugated-core panels without a gap between plates in the core have smaller shear orthotropy and do not need the correction. Modeling the thick-faces effect ensures correct results for all cases considered in this study, and thus one should resort to this approach in case of uncertainty whether the ordinary equivalent single-layer model is valid.


Sign in / Sign up

Export Citation Format

Share Document