Structural and Morphological La0.85-xBaxNa0.15MnO3 (x = 0, 0.05, 0.10 and 0.15) Perovskite Manganite

2020 ◽  
Vol 860 ◽  
pp. 95-100
Author(s):  
Ikhwan Nur Rahman ◽  
Budhy Kurniawan ◽  
Dhawud Sabilur Razaq ◽  
Arief Sudarmaji ◽  
Dicky Rezky Munazat

Bulk polycrystalline samples La0.85-xBaxNa0.15MnO3 (x = 0, 0.05, 0.10 and 0.15) manganites were synthesized by the sol-gel route. The effect of Barium (Ba) existence on the structural and morphological was investigated by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The structural parameters were obtained using Rietveld refinement of the XRD pattern. It was revealed the structures of compounds have rhombohedral with R-3c space group without any impurities phase. Furthermore, several changes are found to exist due to Ba substitution such as the lattice parameter, unit cells volume, average crystallite size, average Mn-O bond length (<Mn – O>) and average Mn-O-Mn bond angle (<Mn – O – Mn>). The changes in <Mn – O> and <Mn – O – Mn> due to Ba substitution, affects the double exchange interaction of the samples. SEM images reveal the existence of Ba also affects the morphology of the studied samples, which consisted of polygonal grains with homogeneous chemical composition.

2020 ◽  
Vol 860 ◽  
pp. 89-94
Author(s):  
Dicky Rezky Munazat ◽  
Budhy Kurniawan ◽  
Dhawud Sabilur Razaq ◽  
Ikhwan Nur Rahman ◽  
Arief Sudarmaji ◽  
...  

La0.7Ba0.25Nd0.05MnO3 (LBNMO) compounds were synthesized using two different methods, namely are solid-state reaction (SS) and sol-gel (SG). All samples were heat-treated at 1200 °C for 12 hours. The investigation on structural, morphological, and magnetic properties was carried out by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM), and Vibrating Samples Magnetometer (VSM) at room temperature. From the Rietveld refinement, both samples have formed a rhombohedral structure with an R-3c (167) space group. The average crystallite size was calculated using the Scherrer formula and Williamson-Hall (W-H) method for comparison. It was shown that the crystallite size of the sample produced by the SG method has larger than the SS method. This result is fairly consistent with the result obtained from SEM analysis, which shows that the average grain for the SG sample is larger than of the grain of the SS samples. From the magnetic hysteresis curve, the magnetization saturation value for the SG was higher and sharper than that of the SS sample. These confirm the occurrence of the double exchange interaction in the samples, which is mainly associated with the reduction of bandwidth and grain size.


2012 ◽  
Vol 10 (6) ◽  
pp. 1799-1807 ◽  
Author(s):  
Tamara Slatineanu ◽  
Eliano Diana ◽  
Valentin Nica ◽  
Victor Oancea ◽  
Ovidiu Caltun ◽  
...  

AbstractThe present study is reporting the influence of the chelating/combustion agents on the magnetic properties of Zn ferrite. Six chelating/combustion agents, citric acid, egg white, tartaric acid, glycine, glucose and urea, were used to obtain monophase zinc nanoferrite via a sol-gel auto-combustion method. The samples were subjected to a comparative study of structural features and magnetic properties by means of infrared spectroscopy, X-ray diffractometry, scanning electron microscopy and vibrating sample magnetometry. Significant influence of fuel and combustion mode was observed in the magnetic behavior of as-obtained samples. Values of the structural parameters were discovered to vary as a function of fuel choice, and to obtain crystallite size between 38 and 62 nm, inversion degree between 0.239 and 0.807, lattice parameter between 8.4125 and 8.4432 Å. The optimization of sol-gel method synthesis of zinc ferrite nanoparticles by chosing the appropriate fuel is providing structural and magnetic properties of zinc nanoferrite as potential materials to be used in biomedical applications.


2020 ◽  
Author(s):  
Hemant Kumar Dubey ◽  
Preeti Lahiri

Abstract In the present work, Ni0.6Cd0.4DyxFe2‒xO4 (x = 0.0, 0.05, 0.10, 0.15 and 0.20) nanoparticles (NPs) were synthesized by using sol-gel auto combustion method. The structural characterization was performed by XRD, FTIR, SEM, TEM and EDS analyses. XRD patterns confirmed that the pure and dysprosium substituted Ni-Cd ferrites are in single phase spinel structures, while a trace of DyFeO3 appears as a minor phase for higher concentrations (x = 0.10, 0.15 and 0.20). The Debye‒Scherrer’s method and Williamson-Hall (W-H) method were used to evaluate the crystallite sizes and lattice strain. The average crystallite size was found to be in the range from 27 to 48 nm. FT-IR confirms the formation of spinel structure. SEM images show that reduction of grain size with Dy3+ content. Elemental composition features of samples were examined by EDS. The average particles size estimated from TEM analysis are in good agreement with results obtained from the XRD. The results showed that saturation magnetization (Ms) decreases and coercivity (Hc) increases with increase in Dy3+ concentrations. The dielectric constant and the loss tangent decrease rapidly with increasing frequency and then reaches a constant value, characteristic of normal behavior of ferrites. The dielectric constant was found to decrease with increasing Dy content in Ni-Cd ferrites. Ferrite sample with Dy3+ concentration, x = 0.05 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electrical circuits.


2019 ◽  
Vol 09 (02) ◽  
pp. 1950020 ◽  
Author(s):  
Mohammad Sajjad Hossain ◽  
Yeasmin Akter ◽  
Mohammad Shahjahan ◽  
Muhammad Shahriar Bashar ◽  
Most. Hosney Ara Begum ◽  
...  

Polycrystalline NiCuZn ferrite (NixCu[Formula: see text]Zn[Formula: see text]Fe2O4; [Formula: see text], 0.3, 0.4 and 0.5) were prepared through sol–gel auto combustion method applying double sintering technique. Structural, morphological, elemental analyses (EDS), Fourier-transform infrared spectroscopy (FTIR), Direct Current (DC) electrical resistivity, dielectric, magnetic and optical properties of prepared samples were analyzed. XRD profiles reveal the formation of simple cubic spinel structure without any traceable impurity. The average crystallite size lies within the range of 22–29[Formula: see text]nm. Lattice parameter decreases with increasing Ni concentration. Room temperature DC resistivity was recorded from [Formula: see text] to [Formula: see text][Formula: see text][Formula: see text][Formula: see text]cm. Both dielectric constant ([Formula: see text]) and loss factor (tan[Formula: see text]) were decreased with increase of frequency while AC conductivity increases. FTIR absorption peak occurred at three different frequency ranges at 570–577[Formula: see text]cm[Formula: see text], 1635–1662[Formula: see text]cm[Formula: see text] and 3439–3448[Formula: see text]cm[Formula: see text]. Magnetic properties were investigated by using vibrating sample magnetometer (VSM). Decreasing trends were observed for saturation magnetization ([Formula: see text]), magnetic coercivity ([Formula: see text]) and remanant magnetization ([Formula: see text]) with the increase of Ni content. Optical band gap ([Formula: see text]2.70–2.79[Formula: see text]eV) were calculated from diffuse reflectance data by using Kubelka–Munk function.


2002 ◽  
Vol 35 (5) ◽  
pp. 577-580 ◽  
Author(s):  
Zein Heiba ◽  
Hasan Okuyucu ◽  
Y. S. Hascicek

Nanosized polycrystalline samples of (Er1−uGdu)2O3(0 ≤u≤ 1.0) were synthesized by a sol–gel technique. X-ray diffraction data were collected and the crystal structures were refined by the Rietveld method. All samples are found to have the same crystal system and formed solid solutions over the whole range ofu. The Er3+and Gd3+ions were randomly distributed over two cationic sites, 8band 24d, in the space groupIa\bar{3} (206) in all refined structures. The lattice parameter was found to vary non-linearly with the composition (u). The average microstrain and average crystallite size have been calculated from the Williamson–Hall plots for each sample. The average size ranges from 50 to 70 nm, and the microstrain from 0.4 to 1.7%.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sheena Xavier ◽  
Smitha Thankachan ◽  
Binu P. Jacob ◽  
E. M. Mohammed

A series of samarium-substituted cobalt ferrites (CoFe2−xSmxO4 with x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) was synthesized by the sol-gel method. The structural characterizations of all the prepared samples were done using XRD and FTIR. These studies confirmed the formation of single-phase spinel structure in all the compositions. The increase in the value of lattice parameter with increase in samarium concentration suggests the expansion of unit cell. The Hall-Williamson analysis is used for estimating the average crystallite size and lattice strain induced due to the substitution of samarium in the prepared samples. Crystallinity and the crystallite size are observed to increase with the concentration of samarium. The surface morphology and particle size of a typical sample were determined using SEM and TEM respectively. The substitution of samarium strongly influences the magnetic characteristics, and this is confirmed from the magnetization measurements at room temperature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dilson Juan ◽  
Miguel Pruneda ◽  
Valeria Ferrari

AbstractOxygen vacancies are common to most metal oxides and usually play a crucial role in determining the properties of the host material. In this work, we perform ab initio calculations to study the influence of vacancies in doped manganites $$\text {La}_{(1-\text {x})} \text {Sr}_{\text {x}} \text {MnO}_{3}$$ La ( 1 - x ) Sr x MnO 3 , varying both the vacancy concentration and the chemical composition within the ferromagnetic-metallic range ($$0.2\,<\,\text {x}\,<\,0.5$$ 0.2 < x < 0.5 ). We find that oxygen vacancies give rise to a localized electronic level and analyse the effects that the possible occupation of this defect state can have on the physical properties of the host. In particular, we observe a substantial reduction of the exchange energy that favors spin-flipped configurations (local antiferromagnetism), which correlate with the weakening of the double-exchange interaction, the deterioration of the metallicity, and the degradation of ferromagnetism in reduced samples. In agreement with previous studies, vacancies give rise to a lattice expansion when the defect level is unoccupied. However, our calculations suggest that under low Sr concentrations the defect level can be populated, which conversely results in a local reduction of the lattice parameter. Although the exact energy position of this defect level is sensitive to the details of the electronic interactions, we argue that it is not far from the Fermi energy for optimally doped manganites ($$\text {x}\,\sim \,1/3$$ x ∼ 1 / 3 ), and thus its occupation could be tuned by controlling the number of available electrons, either with chemical doping or gating. Our results could have important implications for engineering the electronic properties of thin films in oxide compounds.


Author(s):  
Chung Do Pham ◽  
Oanh Thi Mai Le ◽  
Minh Van Nguyen

We synthesized 0-3 type (1-x)PbTiO3-xNiFe2O4 (x = 0.0-0.5) multiferroic composites with two independently crystallized parent phases by the sol-gel method. Structural, surface morphology, vibrational, optical, and magnetic characteristics were investigated by X-ray diffraction (XRD), SEM, Raman scattering, UV-vis absorption, and magnetization (M-H) measurements, respectively. The XRD result showed that the lattice parameter a of the PbTiO3 (PTO) phase decreased while lattice parameter c increased after compositing, leading to a decrease in the tetragonal ratio c/a. SEM images indicated that the NiFe2O4 (NFO) crystals that crystallized later are small and adhere to the surface of the large PTO particles. The strong cohesion between the two components was also revealed by the gradual shift of the Raman peaks to the lower wavelength and the reduction of the Raman intensity as the NFO content increased. The UV-vis absorption result showed the co-absorption spectra of the parent phases in the composites. Magnetization curves presented a sharp increase in saturation magnetization MS with NFO content from 0.014 emu/g for the PTO sample to 14.360 emu/g for the composite containing 50 mol% NFO. This study indicates an effective method in the search for multilayer composites.


2021 ◽  
Vol 22 (3) ◽  
pp. 516-521
Author(s):  
Yu.V. Yavorsky' ◽  
Ya.V. Zaulichny ◽  
M.V. Karpets ◽  
A.I. Dudka ◽  
A.B. Hrubiak ◽  
...  

This paper highlights the relationship between changes in structural and morphological features, electronic structure and exanging of time mechanical treatment at microbraker (MBT). Scaning electron microscopy revealed a change in the morphological features of nanoscale powders. From the comparison of SEM images of 0.8SiO2/0.2Al2О3 mixture before and after MBT, it is established that due to MBT, the agglomerates of the initial components are simultaneously crushed with perfect mixing particles of oxides between each other and the formation of new agglomerates with a denser structure. The increase in processing time leads to an increase in the density of the nanocomposite. The effect of time of mechanical treatment  on the structural parameters and phase composition of mixtures of silicon dioxide and titanium were studied using the method of X-ray structural analysis. The established agglomeration is accompanied by a change in the lattice parameter c with a change in the regions of coherent scattering of crystalline Al2О3. Ultra-soft X-ray emission spectroscopy was used to study the distribution of Op-, Sisd- and Alsd- valence electrons in 0.8SiO2/0.2Al2О3 powder mixtures after the different time of mechanicall treatment. An increase in atomic charges has been measured and can be explained by the transfer of electrons from Si and Al to O atoms in split Opπ-binding states.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1156
Author(s):  
Danyal Ahmad ◽  
Nasir Mehboob ◽  
Abid Zaman ◽  
Nabeel Ahmed ◽  
Kashif Ahmed ◽  
...  

Cerium (Ce)-doped Ni0.5Cd0.5CexFe2−xO4 (0.0 ≤ x ≤ 0.20) was synthesized using the sol–gel auto-combustion method. X-ray diffraction (XRD) analysis revealed that all the samples retained spinel cubic crystal structure with space group Fd3m at 800 °C. Crystal structure parameters, such as lattice constant, average crystallite size, and X-ray density were estimated from the major XRD (311) peak. Bulk density and porosity were also calculated. The average crystallite size was estimated to be in the range of 20–24 nm. SEM images displayed agglomerated particles with a porous morphology. The dielectric constant (ε′) increased and the dielectric loss tangent (tanδ) decreased with rising Ce concentration. The hysteresis loop (M–H loop) was measured at room temperature using a vibrating-sample magnetometer (VSM), which showed a nonlinear decrease in magnetization and coercivity with increasing Ce concentration.


Sign in / Sign up

Export Citation Format

Share Document