Crack Repairing of Aluminum Alloy 6061 by Reinforcement of Al2O3 and B4C Particles Using Friction Stir Processing

2021 ◽  
Vol 875 ◽  
pp. 238-247
Author(s):  
Zunair Masroor ◽  
Ahsan Abdul Rauf ◽  
Faisal Mustafa ◽  
Syed Wilayat Husain

Crack repairing of aluminum alloys is done using conventional welding techniques or mechanical methods, which results in the redundancy of mechanical properties due to defects formation. Friction Stir Welding/Processing (FSW/FSP) is a solid-state joining technique which is used to join various different similar and dissimilar metals, along with the fabrication of surface composites to cater the mentioned problem. The objective of this study is to repair the crack produced in 6061 aluminum alloy by the reinforcement of ceramic particles, Al2O3 and B4C, to further increase the efficiency of the joint along the crack line. Weld parameters, equipment used and the processing conditions are emphasized. The mechanical testing and the characterization of the weld as well as base metal was done and compared using tensile testing, micro hardness test and microstructural analysis. X-Ray Diffraction (XRD) was performed for crystallinity and intermetallic study. The dispersion of the particles was investigated using Field Emission Scanning Electron Microscope (FESEM). The crack in the Al-6061 was effectively repaired using FSP. The reinforced samples showed improved mechanical properties as compared to non-reinforced ones.

2009 ◽  
Vol 25 (01) ◽  
pp. 21-26
Author(s):  
Pankaj Biswas ◽  
N. R. Mandal

Friction stir welding, a comparatively new joining technique, is mainly used for welding aluminum alloys. In the present work, an attempt has been made to study the effect of weld parameters of friction stir welding of marine grade 5083 aluminum alloy. Several test runs were conducted to assess the effects of tool rotating speed and tool traverse speed on the microstructure and mechanical properties of the welded joint. It was observed that the tool traverse speed has a significant effect on the end properties of the welded joint. Grain refinement was observed in the thermomechanically affected zone (TMAZ), which led to improved mechanical properties of the welded joint. However, an increase in welding speed keeping rotational speed constant led to deterioration of mechanical properties. The study strongly indicates a possibility of achieving a superior welded joint in marine grade 5083 aluminum alloy with adequate selection of process parameters.


2018 ◽  
Vol 8 (1) ◽  
pp. 2493-2498 ◽  
Author(s):  
A. W. El-Morsy ◽  
M. Ghanem ◽  
H. Bahaitham

In this work, the effects of rotational and traverse speeds on the 1.5 mm butt joint performance of friction stir welded 2024-T4 aluminum alloy sheets have been investigated. Five rotational speeds ranging from 560 to 1800 rpm and five traverse speeds ranging from 11 to 45 mm/min have been employed. The characterization of microstructure and the mechanical properties (tensile, microhardness, and bending) of the welded sheets have been studied. The results reveal that by varying the welding parameters, almost sound joints and high performance welded joints can be successfully produced at the rotational speeds of 900 rpm and 700 rpm and the traverse speed of 35 mm/min. The maximum welding performance of joints is found to be 86.3% with 900 rpm rotational speed and 35 mm/min traverse speed. The microhardness values along the cross-section of the joints show a dramatic drop in the stir zone where the lowest value reached is about 63% of the base metal due to the softening of the welded zone caused by the heat input during joining.


2015 ◽  
Vol 817 ◽  
pp. 212-218
Author(s):  
Xiao Mao Zheng ◽  
Da Tong Zhang

Effect of post-welded heat treatment (PWHT) on the microstructure and mechanical properties of friction stir welded 7A04-O aluminum alloy was investigated. Solution heat treatment (ST) and artificial aging (T6) were given to specimens to improve the mechanical properties of the joints. The results show that defect-free joint was obtained via FSW and the microstructure of nugget zone was characterized by fine and equiaxed grains. After ST, most second phases dissolve in the matrix and the α-Al grains became coarse. Second phases precipitated in the α-Al matrix uniformly after T6 treatment. The Vickers hardness test shows that PWHT made the hardness distribution of the joints more evenly. The tensile test results indicate that the tensile strength of the joint increased from 228 MPa (in as-welded condition) to 440 MPa and 528 MPa after ST and T6 treatment respectively, but the elongation decreased to a certain extent. SEM fracture morphologies indicate that the joint failed through ductile fracture for the as-welded and ST states, and failed in a mixture mode of brittle fracture and ductile fracture for the T6 state.


2019 ◽  
Vol 969 ◽  
pp. 27-33
Author(s):  
K. Tejonadha Babu ◽  
S. Muthukumaran ◽  
C.H. Bharat Kumar ◽  
C. Sathiya Narayanan

Friction stir welding (FSW), a solid-state joining process is extensively using in the welding of aluminum alloy sheets. In order to save energy and reduce emission, lightweight materials like aluminum alloys were introduced into steel car body, which requires the development of effective joining processes. In the present study, welding was carried out in two different conditions, in the air (CFSW) and underwater (UWFSW) at various welding speeds to weld 5052-O aluminum alloy sheets. The effect of UWFSW on microstructural developments, mechanical properties, and formability was evaluated and compared. Grain refinement is an important opportunity to improve the mechanical properties of FS welds. Considerable grain refinement was obtained in UWFSW joints, which is smaller than that in the CFSW joints. The results indicated an increase in tensile strength, hardness, the percentage of elongation, and formability of UWFSW weld sheets. The results of the tensile test, hardness test, microstructure and fractography as in good correlation with improved properties.


2012 ◽  
Vol 710 ◽  
pp. 253-257 ◽  
Author(s):  
Shivanna Pradeep ◽  
Sumit Kumar Sharma ◽  
Vivek Pancholi

In the present investigation friction stir processing (FSP) is carried out by single and multipass FSP on a 5086 aluminum alloy to modify microstructure and mechanical properties. The processing is carried out at constant rotation speed of 1025 rpm and at a traverse speed of 30 mm/min. Inhomogeneous microstructural distribution was observed across the processed zone. EBSD analysis has been done to evaluate the microstructure. Overlapping passes is showing same grain size as in single pass FSPed material. Material processed using multi pass FSP at 30 mm/min is showing higher mechanical strength as compared to base material. The bulk material produced due to multipass seems to be good for superplastic forming applications.


Sign in / Sign up

Export Citation Format

Share Document