Surface Treatment to Promote Joining of Glass Fiber Reinforced Plastic and AZ31 Magnesium Alloy for Fiber Metal Laminates via Hot Metal Pressing

2021 ◽  
Vol 883 ◽  
pp. 111-118
Author(s):  
Lucia Lizzul ◽  
Marco Sorgato ◽  
Andrea Ghiotti ◽  
Stefania Bruschi

When fabricating fiber metal laminates, the joining between the metal sheet and the composite is affected by the chemical and mechanical properties at the interface. To this end, this study investigated the influence of different induced-surface characteristics of AZ31B magnesium alloy sheets when joint with glass fiber reinforced polyamide 6. The treatments, carried out to modify the AZ31B surfaces, were annealing, sandblasting, and their combination. The mechanical and chemical interlocking at the metal-composite interface was assessed in terms of macroscopic and microscopic defects as well as lap shear strength. The obtained results indicated that the joint effectiveness was mainly affected by the annealing treatment, which induced both a chemical and morphological modification of the surface. The formed oxide layer at the interface, combined with surface topography modification, were capable to increase the lap shear strength up to 87%.

Author(s):  
M Safari ◽  
M Salamat-Talab ◽  
A Abdollahzade ◽  
A Akhavan-Safar ◽  
LFM da Silva

The experimental assessment of the creep age forming performance of fiber metal laminates was considered in this study. To this end, different fiber metal laminates with the stacking sequence of [Al/02/Al] were manufactured using aluminum alloy 6061 sheets as skins along with E-glass fiber-reinforced polypropylene and E-glass fiber-reinforced polyamide 6 as two different cores. Next, a comprehensive investigation was conducted on the impacts of two main parameters in the creep forming process, i.e. the effect of time and temperature on the spring-back properties of deformed fiber metal laminates. Initially, using the design of experiments and based on the response surface methodology, an imposed spring-back of the creep age formed fiber metal laminates was modeled and the governing linear regression equations were derived and verified. Then, to find the best combination yielding the minimum spring-back, the process inputs (time and temperature) were optimized. The results proved that with an increase in either time or temperature, the spring-backs of the two types of creep age formed fiber metal laminates decreased due to the decrease in elastic strains and the increase of creep strains. Also, to achieve a creep age formed fiber metal laminate with minimum spring-back according to multi-objective optimization in both fiber metal laminates, the most proper values of time and temperature should be taken as 6 h and approximately 160°C, respectively.


2018 ◽  
Vol 22 (5) ◽  
pp. 1386-1403 ◽  
Author(s):  
Alireza Saadatfard ◽  
Mahdi Gerdooei ◽  
Abdolhossein Jalali Aghchai

It is known that fiber metal laminates as one of hybrid materials with thin metal sheets and fiber/resin layers have limited formability in conventional forming methods. This paper presents an experimental and numerical study for drawability of glass fiber-reinforced aluminum laminates under hydromechanical drawing technique. Fiber metal laminates comprised of a layer of woven glass fiber-reinforced prepreg, sandwiched between two layers of aluminum alloy. In order to produce fiber metal laminates, the laminates were subjected to a sufficient squeezing pressure under a controlled heating time and temperature by using a hydraulic hot press. A hydromechanical tooling equipped with blank-holder force and fluid pressure control system was used to form the initial circular fiber metal laminate blank. Finally, the effect of parameters such as pre-bulging pressure, final chamber pressure, and drawing ratio on process variables was evaluated. Also, the characteristic curve of hydromechanical drawing of fiber metal laminate i.e. chamber pressure in terms of drawing ratio was achieved by means of experimental tests and numerical simulations. The results showed that the maximum drawing ratio of defect-free fiber metal laminates, namely without any tearing, wrinkling, and delamination was obtained at pre-bulging and chamber pressure of 35 and 80 bar, respectively.


2021 ◽  
pp. 002199832110316
Author(s):  
Nahit Öztoprak

Joining dissimilar materials to achieve lightweight design and energy efficiency has been increasingly popular. A joint formed by components of particle-reinforced metal and polymer matrix composite combines the merits of both materials. This paper is mainly focused on the research of the tensile lap shear and impact behavior of the dissimilar single-lap joints (SLJs) between SiCp/AA2124 composite and glass fiber-reinforced polypropylene (PP). The effects of out-of-plane loading applied from different surfaces of SLJs on impact responses are evaluated. Hot pressing technique is introduced to manufacture metal/polymer assembly without using any adhesive. The hole drilling effect is investigated with the idea that it may provide weight reduction and also increase the strength of the dissimilar SLJs. The results indicate that the dissimilar SLJs show more Charpy impact strength when the impact is performed on the metal-matrix composite (MMC). Mechanical properties of SLJs are adversely affected by a drilled hole in the MMC adherend.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Daniel Bohling ◽  
Andrzej Cwirzen ◽  
Karin Habermehl-Cwirzen

Full utilization of mechanical properties of glass fiber fabric-reinforced cement composites is very limited due to a low bond strength between fibers and the binder matrix. An experimental setup was developed and evaluated to correlate the mortar penetration depth with several key parameters. The studied parameters included fresh mortar properties, compressive and flexural strengths of mortar, the fabric/mortar bond strength, fabric pullout strength, and a single-lap shear strength. Results showed that an average penetration of mortar did not exceed 100 µm even at a higher water-to-binder ratio. The maximum particle size of the used fillers should be below an average spacing of single glass fibers, which in this case was less than 20 µm to avoid the sieving effect, preventing effective penetration. The pullout strength was strongly affected by the penetration depth, while the single-lap shear strength was also additionally affected by the mechanical properties of the mortar.


2020 ◽  
pp. 089270572097617
Author(s):  
B Yelamanchi ◽  
E MacDonald ◽  
NG Gonzalez-Canche ◽  
JG Carrillo ◽  
P Cortes

Fiber Metal Laminates (FML) are structures that contain a sequential arrangement of metal and composite materials, which are of great interest to the aerospace sector due to the superior mechanical performance. The traditional manufacturing process for FML involves considerable investment in manufacturing resources depending on the design complexity of the desired components. To mitigate such limitations, 3D printing enables direct digital manufacturing to create FML with customized configurations. In this work, a preliminary mechanical characterization of additively-manufacturing-enabled FML has been investigated. A series of continuous glass fiber-reinforced composites were printed with a Markforged system and placed between layers of aluminum alloy to manufacture hybrid laminate structures. The laminates were subjected to tensile, interfacial fracture toughness, and both low-velocity and high-velocity impact tests. The results showed that the FMLs appear to have a good degree of adhesion at the metal-composite interface, although a limited intralaminar performance was recorded. It was also observed that the low and high-velocity impact performance of the FMLs was improved by 9–13% relative to that of the constituent elements. The impact performance of the FML appeared to be related to the fiber fracture, out of plane perforation and interfacial delamination within the laminates. The present study can provide an initial research foundation for considering 3D printing in the production of hybrid laminates for static and dynamic applications.


Sign in / Sign up

Export Citation Format

Share Document