Methodological Aspects of Evaluating the Particle Size Distribution of Powder Elastomeric Materials

2021 ◽  
Vol 899 ◽  
pp. 58-66
Author(s):  
I.V. Gordeeva ◽  
Tatiana V. Dudareva ◽  
I.A. Krasotkina ◽  
Vadim G. Nikol'skii ◽  
Yulia A. Naumova ◽  
...  

The properties of crumb rubber (CR) of unsorted end-of-life tires and of gas masks face part crushed at ambient temperature, as well as powder elastomeric materials (PEM) obtained by high-temperature shear grinding (HTSG) of CR and high-temperature shear co-grinding of CR with thermoplastic elastomer have been investigated. The methods of dry screening with vibrating sieve, wet laser diffraction, scanning electron microscopy, determination of the specific surface area by the BET method by sorption nitrogen and powder agglomeration were used. The effect of an anti-agglomerating additive on the results of determining the particle size distribution by the methods of dry vibrating sieving and wet laser diffraction has been investigated. Methodological recommendations for determining the particle size distribution of powder elastomeric materials (PEM) obtained by the HTSG have been developed.

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 465
Author(s):  
Cezary Polakowski ◽  
Magdalena Ryżak ◽  
Agata Sochan ◽  
Michał Beczek ◽  
Rafał Mazur ◽  
...  

Particle size distribution is an important soil parameter—therefore precise measurement of this characteristic is essential. The application of the widely used laser diffraction method for soil analysis continues to be a subject of debate. The precision of this method, proven on homogeneous samples, has been implicitly extended to soil analyses, but this has not been sufficiently well confirmed in the literature thus far. The aim of this study is to supplement the information available on the precision of the method in terms of reproducibility of soil measurement and whether the reproducibility of soil measurement is characterized by a normal distribution. To estimate the reproducibility of the laser diffraction method, thirteen various soil samples were characterized, and results were analysed statistically. The coefficient of variation acquired was lowest (3.44%) for silt and highest for sand (23.28%). Five of the thirteen tested samples were characterized by a normal distribution. The fraction content of eight samples was not characterized by normal distribution, but the extent of this phenomenon varied between soils. Although the laser diffraction method is repeatable, the measurement of soil particle size distribution can have limited reproducibility. The main cause seems to be small amounts of sand particles. The error can be amplified by the construction of the dispersion unit. Non-parametric statistical tests should be used by default for soil laser diffraction method analysis.


Author(s):  
S. Cazares ◽  
J. A. Barrios ◽  
C. Maya ◽  
G. Velásquez ◽  
M. Pérez ◽  
...  

Abstract An important physical property in environmental samples is particle size distribution. Several processes exist to measure particle diameter, including change in electrical resistance, blocking of light, the fractionation of field flow and laser diffraction (these being the most commonly used). However, their use requires expensive and complex equipment. Therefore, a Digital Microscopic Imaging Application (DMIA) method was developed adapting the algorithms used in the Helminth Egg Automatic Detector (HEAD) software coupled with a Neural Network (NN) and Bayesian algorithms. This allowed the determination of particle size distribution in samples of waste activated sludge (WAS), recirculated sludge (RCS), and pretreated sludge (PTS). The recirculation and electro-oxidation pre-treatment processes showed an effect in increasing the degree of solubilization (DS), decreasing particle size and breakage factor with ranges between 44.29%, and 31.89%. Together with a final NN calibration process, it was possible to compare results. For example, the 90th percentile of Equivalent Diameter (ED) value obtained by the DMIA with the corresponding result for the laser diffraction method. DMIA values: 228.76 μm (WAS), 111.18 μm (RCS), and 84.45 μm (PTS). DMIA processing has advantages in terms of reducing complexity, cost and time, and offers an alternative to the laser diffraction method.


2008 ◽  
Vol 53 (No. 1) ◽  
pp. 34-38 ◽  
Author(s):  
M. Ryzak ◽  
A. Bieganowski ◽  
R.T. Walczak

Particle size distribution affects many physical soil properties and processes taking place in soil. There are many methods to determine the particle size distribution. The most frequently used are the sieve, sieve-pipette and sedimentation methods. Technological progress in electronics permitted a wide use of new methods of particle size distribution measurement in soil, e.g. the laser diffraction method. A comparison of particle size distribution obtained with the universally used areometer method (Cassagrande, modified by Prószynski) with results from the laser diffraction method for soil material received from grey-brown podzolic soil is presented in this work. The largest differences between the results were obtained for the smallest fraction determined with the areometer and laser diffraction methods. In a majority of other cases the slopes of interpolated straight lines were contained within the range of 0.81 ÷ 1.09.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 640
Author(s):  
Junjie Tang ◽  
Yuan Sun ◽  
Chunwei Zhang ◽  
Long Wang ◽  
Yizhou Zhou ◽  
...  

The preparation of rhenium powder by a hydrogen reduction of ammonium perrhenate is the only industrial production method. However, due to the uneven particle size distribution and large particle size of rhenium powder, it is difficult to prepare high-density rhenium ingot. Moreover, the existing process requires a secondary high-temperature reduction and the deoxidization process is complex and requires a high-temperature resistance of the equipment. Attempting to tackle the difficulties, this paper described a novel process to improve the particle size distribution uniformity and reduce the particle size of rhenium powder, aiming to produce a high-density rhenium ingot, and ammonium perrhenate is completely reduced by hydrogen at a low temperature. When the particle size of the rhenium powder was 19.74 µm, the density of the pressed rhenium ingot was 20.106 g/cm3, which was close to the theoretical density of rhenium. In addition, the hydrogen reduction mechanism of ammonium perrhenate was investigated in this paper. The results showed that the disproportionation of ReO3 decreased the rate of the reduction reaction, and the XRD and XPS patterns showed that the increase in the reduction temperature was conducive to increasing the reduction reaction rate and reducing the influence of disproportionation on the reduction process. At the same reduction temperature, reducing the particle sizes of ammonium perrhenate was conducive to increasing the hydrogen reduction rate and reducing the influence of the disproportionation.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1232
Author(s):  
Dušan Igaz ◽  
Elena Aydin ◽  
Miroslava Šinkovičová ◽  
Vladimír Šimanský ◽  
Andrej Tall ◽  
...  

The paper presents the comparison of soil particle size distribution determined by standard pipette method and laser diffraction. Based on the obtained results (542 soil samples from 271 sites located in the Nitra, Váh and Hron River basins), regression models were calculated to convert the results of the particle size distribution by laser diffraction to pipette method. Considering one of the most common soil texture classification systems used in Slovakia (according to Novák), the emphasis was placed on the determination accuracy of particle size fraction <0.01 mm. Analysette22 MicroTec plus and Mastersizer2000 devices were used for laser diffraction. Polynomial regression model resulted in the best approximation of measurements by laser diffraction to values obtained by pipette method. In the case of particle size fraction <0.01 mm, the differences between the measured values by pipette method and both laser analyzers ranged in average from 3% up to 9% and from 2% up to 11% in the case of Analysette22 and Mastersizer2000, respectively. After correction, the differences decreased to average 3.28% (Analysette22) and 2.24% (Mastersizer2000) in comparison with pipette method. After recalculation of the data, laser diffraction can be used alongside the sedimentation methods.


2020 ◽  
Vol 10 (5) ◽  
pp. 657-662
Author(s):  
Gang Wang ◽  
Honghai Fan ◽  
Guancheng Jiang ◽  
Wanjun Li ◽  
Yu Ye ◽  
...  

In this paper, the cross-linked micro-gel polymer between acrylamide (AM) and N, N-Methylenebisacrylamide (MBA) was synthesized by dispersion polymerization. The initiator and crosslinking agent concentration were used to control the particle size of micro-gel polymer. The filtration property and mechanism of micro-gel were investigated comprehensively. The characteristics of micro-gel were checked by means of Fourier transform infrared spectroscopy, thermogravimetry, transmission electron microscopy, and particle size distribution, respectively. The results indicated that the cross-linked micro-gel polymer exhibited several outstanding merits, such as thermal stability (up to 200 °C), filtration control and rheological property. Microstructure analysis and particle size distribution examinations showed that the scale of micro-gel polymer was micro, which is in accord with design. Rheological tests demonstrated that the nonlinear structure of micro-gel polymer showed less impact on the apparent viscosity. The anti-high temperature property of micro-gel polymer was better than poly anioniccellulose (PAC) and asphalt widely applied in drilling fluid for anti-high temperature fluid-loss additive. As a result, the cross-linked micro-gel polymer had great potential to be applied in high temperature water-based mud.


2013 ◽  
Vol 12 (1) ◽  
pp. vzj2012.0064 ◽  
Author(s):  
Andrzej Bieganowski ◽  
Tymoteusz Chojecki ◽  
Magdalena Ryżak ◽  
Agata Sochan ◽  
Krzysztof Lamorski

Sign in / Sign up

Export Citation Format

Share Document