The Potential Use of Brick Wastes in the Generation of New Materials for Construction through Geopolymerization Processes

2021 ◽  
Vol 904 ◽  
pp. 387-391
Author(s):  
Ramiro Correa-Jaramillo ◽  
Berenice Zúñiga-Torres ◽  
Alonso Zúñiga-Suárez ◽  
Francisco Hernández-Olivares ◽  
Israel Briceño-Tacuri

The calcined clay bricks are the second most used materials in construction that, after the demolition processes, tends to become rubble, generating a negative visual and environmental impact, in addition to the fact that the brick-making process has not been industrialized in Ecuador, for that, its properties are deficient; in this way, the present research aims to study the physical, chemical and mineralogical characteristics of brick waste from the Southern part of ​​this country, for the elaboration of ecological bricks through geopolymerization processes, using as alkaline activator Sodium Hydroxide at temperature ranged between 90 °C and 200 °C, obtaining an optimal mixture at the combination 12.5 M, 26 wt% Cs, 150 °C. The mechanical properties of bricks as simple compression and flexural strength, respectively, applying the experimental Griffith criterion method by finite element simulation method. These ecological bricks obtained are suitable for use in construction.

2013 ◽  
Vol 389 ◽  
pp. 364-370
Author(s):  
Bei Li ◽  
Jian Bin Zhang ◽  
Lu Sha Jiang

In order to analysis modal characteristic of bearing with pre-tightening force on main spindle of numerical control lathe, this paper proposes a model of spindle modality analysis. This model is used to simulate the preloaded bearing shaft system modal, and the simulation results are verified by modal experiment. This paper takes 7005c as the research object to establish the equivalent-spring model based on the Hertz theory considering the pre-tightening force, whose focus is dealing with the contact between bearings rolling element and raceway. Then the model will be used to get the bearing stiffness for finite element simulation analysis. The shafting modal with preloaded bearing test platform is structured to get the shaft system modal parameters, which is compared with and verified the simulation analysis.


2013 ◽  
Vol 700 ◽  
pp. 164-169
Author(s):  
Kai Song ◽  
Chao Wang ◽  
Tao Chen ◽  
Ze Zhou

This paper aims at cover body dent resistance optimization problems, developed a whole process method using the finite element simulation method and the corresponding engineering experience to solve the dent resistance problem. Use of Tcl/Tk language to develop the script for fast simulation model consider material nonlinearity and contact nonlinearity, Use Abaqus software to calculate the results, and then customized to optimize use of simplified script parameters on changes in the working conditions of the structure will be optimized. The results show that this set of process optimization method to solve the variable conditions dent resistance is quickly, efficiently and accurately.


2021 ◽  
Vol 1023 ◽  
pp. 155-162
Author(s):  
Berenice Zúñiga-Torres ◽  
Ramiro Correa-Jaramillo ◽  
Francisco Hernández-Olivares ◽  
Francisco Fernandez-Martinez ◽  
Alonso Zúñiga-Suárez ◽  
...  

The construction industry has focused on trying to minimize and control the environmental impacts caused within the process of production and manufacture of fired bricks, for this reason the present research proposes five different alternative mixtures for the elaboration of ecological bricks, four of these based on soil-cement and one obtained through a geopolymerization process, using raw materials from the amazon region and the southern highlands of Ecuador, such as soil from the Centza mine (MC), sand from the Quiringue mine (MQ), organic correctors of husk rice (RH ), peanut shell (PS), natural gypsum (G) from the Malacatos sector and fired brick residues from the same sector. The raw materials were characterized (analysis: physicochemical and mineralogical); the soil-cement-based combinations used different percentages of substitution of organic correctors and gypsum, the optimum percentage of water and cement was determined through the compaction test and resistance to simple compression respectively, the samples were cured and tested at ages of 7, 14 and 28 days. In the geopolymerization process, an alkaline solution NaOH was used in different concentrations of molarity and solution contents, the specimens were cured at temperatures of 90 °C, 120 °C, 150 °C, 180 °C and 200 °C. The different combinations were subjected to indirect traction with the purpose to determine the optimal mixture and subsequent estimation of the compressive strength of bricks applying the Griffith criterion, the results were validated by the finite element method, obtaining strengths of 4 MPa in the combination soil-cement sand (SC_Ar1), in soil-cement rice husk (SC_RH2) and soil-cement peanut shell (SC_PS2) mixtures its resistance is 3 MPa, while in the soil-cement gypsum (SC_G4) mixture the resistance is 6.90 MPa and finally the resistance in geopolymeric mixture (GBW) is 13.75 MPa; In this way, the optimal combinations comply and increase the resistance to simple compression of bricks by 35% the SC_Ar1 mixture, 130% in the SC_G mixture with respect to the spanish standard and 129% the GBW mixture with respect to the ecuadorian standard.


2018 ◽  
Vol 153 ◽  
pp. 06006
Author(s):  
Jiatong Ye ◽  
Hua Huang ◽  
Chenchen He ◽  
Guangyuan Liu

In this paper, a finite element model of membrane air spring in the vehicle is established, and its vertical stiffness characteristics under a certain inflation pressure are analysed. The result of finite element simulation method is compared with the result of the air spring bench test. The accuracy and reliability of the finite element simulation method in nonlinear analysis of air spring system are verified. In addition, according to the finite element method, the influence of the installation of the air spring limit sleeve on its stiffness is verified.


Author(s):  
Eduardo Bonet-Martínez ◽  
Pedro García-Cobo ◽  
Luis Pérez-Villarejo ◽  
Eulogio Castro ◽  
Dolores Eliche-Quesada

In this research, the feasibility of using bottom ashes generated by the combustion of biomass (olive pruning and pine pruning) as a source of aluminosilicates (OPBA) has been studied, replacing the metakaolin precursor (MK) in different proportions (0, 25, 50, 75 and 100 wt. % substitution) for the synthesis of geopolymers. As alkaline activator an 8 M NaOH solution and a Na2SiO3 have been used. The geopolymers were cured 24 hours in a climatic chamber at 60 ° C in a water-saturated atmosphere, subsequently demoulded and cured at room temperature for 28 days. The results indicated that the incorporation of OPBA waste, which have 19.7 wt. % of Ca, modifies the characteristics of the products formed after alkaline activation. In general terms, the incorporation of increasing amounts of calcium-rich ashes results in geopolymers with higher bulk density. The compressive strength increases with the addition of up to 50 wt. % of OPBA with respect to the control geopolymers, contributing the composition of the residue to the acquisition of a better behaviour mechanical. The results indicate the potential use of these OPBA waste as raw material to produce unconventional cements with 28-day curing strengths greater than 10 MPa, and thermal conductivities less than 0.35 W/mK.


2013 ◽  
Vol 365-366 ◽  
pp. 224-228
Author(s):  
Tian Ma ◽  
Chuan Ri Li ◽  
Shuang Long Rong

To predict an airborne equipment lifetime with finite element simulation method, use ANSYS and Flothem, respectively, to analysis vibration stress and temperature stress, corrected by kinetic experiment; then import the results into the failure prediction software-CALCE PWA, set the intensity and duration of stress according to its mission profile, finally get the component failure life prediction results under comprehensive temperature and vibration stress; extract the Monte-Carlo simulation data, use the single point of failure distribution fitting, fault clustering and multipoint distribution fusion method to get the board and the whole machines lifetime and reliability prediction. The design refinement suggestion of the airborne equipment is given at the end of the conclusion.


2016 ◽  
Vol 685 ◽  
pp. 408-412 ◽  
Author(s):  
E.G. Gromova ◽  
A.G. Bakanova

The paper describes a method of pattern cutting of sheet articles using the elastic medium pressure. Research works have been conducted into feasibility of the suggested pattern cutting using finite element simulation method. The experimental research was conducted into deformation processes during rotational separating stamping of sheet articles by means of elastic medium pressure so that to confirm relevance of the mathematical simulation results. The optimum design process parameter value combinations have been determined for implementing the rotary pattern cutting process.


2014 ◽  
Vol 875-877 ◽  
pp. 1116-1120
Author(s):  
Wen Liang Li ◽  
Wei Zhou ◽  
Li Gao ◽  
Wei Liang Dai

With finite element simulation method, the fatigue life of vehicle front floor is analyzed in different vehicle wheelbases and velocities, and the washboard enhancement coefficient is calculated, then K-v curve, K-m curve and K-v-m surface are drawn, with which influence of vehicle velocity and wheelbase on washboard enhancement coefficient is studied. The study results show that, when the wheelbase is constant, washboard enhancement coefficient increases first and then decreases with velocity increasing, and reaches peak at a certain velocity; when velocity is constant, washboard enhancement coefficient decreases as wheelbase increasing; when velocity and wheelbase both changes, washboard enhancement coefficient varies in K-v-m surface.


Sign in / Sign up

Export Citation Format

Share Document