The Coating of Bovine-Source Hydroxyapatite on Titanium Alloy (Ti-6Al-4V ELI) Using Electrophoretic Deposition for Biomedical Application

2020 ◽  
Vol 1000 ◽  
pp. 97-106
Author(s):  
Dian Juliadmi ◽  
Nuzul Ficky Nuswantoro ◽  
Hidayatul Fajri ◽  
Irma Yulia Indriyani ◽  
Jon Affi ◽  
...  

Research about the utilization of titanium alloy (Ti-6Al-4V ELI) as implant material in the treatment of orthopedic cases had been increasing. Health problems appear due to the drawbacks of using titanium. The lack of titanium using is bio-inertness characteristic, which decreasing its bioactivity and results in low bone growth and effect for implant failure. The titanium can be modified with coating on the surface using a bioactive substance that is natural-source hydroxyapatite. Bovine-source hydroxyapatite (bovineHA) contains apatite component that is similar to human bone apatite. The coating process was carried out using particle size variation (25 μm, 63 μm, and 125 μm) of bovineHA. The electrophoretic deposition (EPD) method was applied to coat hydroxyapatite with 10 volt for 5 minutes onto the titanium surface. The result showed that different size particles have an effect on coating properties. The coating composed by particle-sized 25 μm has better surface coverage (95.89%), indicating more particle mass (particle weight 6.97x103 μg) attached to surface material, thus resulting thick coating. The good coating characteristic using bovine-source hydroxyapatite with small particle size was expected can be used in biomedical applications due to fulfill the prerequisite of the bone implant.

2020 ◽  
Vol 1000 ◽  
pp. 123-131
Author(s):  
Hidayatul Fajri ◽  
Fuad Ramadhan ◽  
Nuzul Ficky Nuswantoro ◽  
Dian Juliadmi ◽  
Djong Hon Tjong ◽  
...  

This study aims to investigate the effect of the electrophoretic deposition process (EPD) of natural HA (extracted from bovine bones) with various particle size on Ti-29Nb-13Ta-4.6Zr (TNTZ) coating surfaces. HA particles were refined from bovine bone powders using planetary ball mill and then sieving to separate the particle based on its size. The maximum size according to sieving mesh size is #25 µm, #63 µm and #125 µm. The coating process was conducted by using EPD apparatus with voltage and time process 10V and 5 minutes, respectively, for each sample. The coating layer morphology was observed with Stereo Microscopy, Scanning Electron Microscopy (SEM) and the thickness was measured with Thickness Gauge. The result shows that the size of the particle determines the coating layer characteristics. The best of HA coating quality according to the implant coating standard is obtained for the 25 µm particle size with the surface coverage is 99%. The thickness is 121 µm and the ratio of chemical composition Calcium and Phosphor Ca/P) is 1,49%. These may be concluded that, on the point of view physical characteristics, natural HA from bovine bone has potential enough as a coating layer to improve the bioactivity implant for biomedical application. However, the mechanical characteristic of the layer is still needed to determine the strength of coating layer for avoiding delamination during application.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 971
Author(s):  
Oktawian Bialas ◽  
Mateusz Lis ◽  
Anna Woźniak ◽  
Marcin Adamiak

This paper analyses the possibility of obtaining surface-infused nano gold particles with the polyether ether ketone (PEEK) using picosecond laser treatment. To fuse particles into polymer, the raw surface of PEEK was sputtered with 99.99% Au and micromachined by an A-355 laser device for gold particle size reduction. Biomimetic pattern and parameters optimization were key properties of the design for biomedical application. The structures were investigated by employing surface topography in the presence of micron and sub-micron features. The energy of the laser beam stating the presence of polymer bond thermalisation with remelting due to high temperature was also taken into the account. The process was suited to avoid intensive surface modification that could compromise the mechanical properties of fragile cardiovascular devices. The initial material analysis was conducted by power–depth dependence using confocal microscopy. The evaluation of gold particle size reduction was performed with scanning electron microscopy (SEM), secondary electron (SE) and quadrant backscatter electron detector (QBSD) and energy dispersive spectroscopy (EDS) analysis. The visibility of the constituted coating was checked by a commercial grade X-ray that is commonly used in hospitals. Attempts to reduce deposited gold coating to the size of Au nanoparticles (Au NPs) and to fuse them into the groove using a laser beam have been successfully completed. The relationship between the laser power and the characteristics of the particles remaining in the laser irradiation area has been established. A significant increase in quantity was achieved using laser power with a minimum power of 15 mW. The obtained results allowed for the continuation of the pilot study for augmented research and material properties analysis.


2016 ◽  
Vol 879 ◽  
pp. 1552-1557
Author(s):  
C. Ramskogler ◽  
L. Cordero ◽  
Fernando Warchomicka ◽  
A.R. Boccaccini ◽  
Christof Sommitsch

An area of major interest in biomedical engineering is currently the development of improved materials for medical implants. Research efforts are being focused on the investigation of surface modification methods for metallic prostheses due to the fundamental bioinert character of these materials and the possible ion release from their surfaces, which could potentially induce the interfacial loosening of devices after implantation. Electron beam (EB) structuring is a novel technique to control the surface topography in metals. Electrophoretic deposition (EPD) offers the feasibility to deposit at room temperature a variety of materials on conductive substrates from colloidal suspensions under electric fields. In this work single layers of chitosan composite coatings containing titania nanoparticles (n-TiO2) were deposit by EPD on electron beam (EB) structured Ti6Al4V titanium alloy. Surface structures were designed following different criteria in order to develop specific topography on the Ti6Al4V substrate. n-TiO2 particles were used as a model particle in order to demonstrate the versatility of the proposed technique for achieving homogenous chitosan based coatings on structured surfaces. A linear relation between EPD time and deposition yield on different patterned Ti6Al4V surfaces was determined under constant voltage conditions, obtaining homogeneous EPD coatings which replicate the 3D structure (pattern) of the substrate surface. The present results show that a combination of both techniques can be considered a promising surface modification approach for metallic implants, which should lead to improved interaction between the implant surface and the biological environment for orthopaedic applications.


1994 ◽  
Vol 5 (1) ◽  
pp. 23-37 ◽  
Author(s):  
Hironobu Oonishi ◽  
Tomohiro Noda ◽  
Seiichi Ito ◽  
Akira Kohda ◽  
Hiroshi Ishimaru ◽  
...  

1979 ◽  
Author(s):  
P. J. Groblicki ◽  
C. R. Begeman

Author(s):  
Gunawarman ◽  
N F Nuswantoro ◽  
D Juliadmi ◽  
H Fajri ◽  
A Budiman ◽  
...  

2021 ◽  
Vol 47 (1) ◽  
pp. 858-864
Author(s):  
Saibal Ray ◽  
Tapas Kumar Bhattacharya ◽  
Vivek Kumar Singh ◽  
Debabrata Deb ◽  
Shounak Ghosh ◽  
...  

2018 ◽  
Vol 350 ◽  
pp. 633-647 ◽  
Author(s):  
Tomasz Moskalewicz ◽  
Anita Zych ◽  
Aleksandra Kruk ◽  
Agnieszka Kopia ◽  
Sławomir Zimowski ◽  
...  

2020 ◽  
Vol 840 ◽  
pp. 336-344
Author(s):  
Martinus Kriswanto ◽  
Muhammad Khairurrijal ◽  
Dave Leonard Junior Wajong ◽  
Tofan Maliki Kadarismanto ◽  
Yusril Yusuf

Hydroxyapatite (HAp) made of capiz shell has been successfully coated onto stainless steel 316L substrate using electrophoretic deposition (EPD) method. In this study, three variations were applied, they were the voltages of 25 V and 50 V, the withdrawal speeds of 0.1 mm/s, 0.5 mm/s, and 1 mm/s, and the sintering temperatures of 750, 850, and 950 °C. These variations were applied to determine the differences in morphology and crystal structure of the layers so that the most suitable result was obtained as a candidate for the bone implant. Characterization was done by Scanning Electron Microscope and X-Ray Diffractometer. The EPD process and the application of sintering temperature eliminated the phase of B type apatite carbonate which made the purity of the HAp layer higher. The SEM results show that the layer was more homogeneous and free of cracking at a voltage of 50 V and the withdrawal speed of 0.1 mm/s. The layer density was higher as the voltage and sintering temperature increased. Higher sintering temperature also made the layer more homogeneous, but at 950 °C, stainless steel 316L substrate underwent a phase transformation which caused the decreasing of the purity of the HAp layer. The best results were obtained by applying a50 V voltage, a withdrawal speed of 0.1 mm/s, and a sintering temperature of 850 °C.


Sign in / Sign up

Export Citation Format

Share Document