Electrophoretic Deposition (EPD) of Natural Hydroxyapatite Coatings on Titanium Ti-29Nb-13Ta-4.6Zr Substrates for Implant Material

2020 ◽  
Vol 1000 ◽  
pp. 123-131
Author(s):  
Hidayatul Fajri ◽  
Fuad Ramadhan ◽  
Nuzul Ficky Nuswantoro ◽  
Dian Juliadmi ◽  
Djong Hon Tjong ◽  
...  

This study aims to investigate the effect of the electrophoretic deposition process (EPD) of natural HA (extracted from bovine bones) with various particle size on Ti-29Nb-13Ta-4.6Zr (TNTZ) coating surfaces. HA particles were refined from bovine bone powders using planetary ball mill and then sieving to separate the particle based on its size. The maximum size according to sieving mesh size is #25 µm, #63 µm and #125 µm. The coating process was conducted by using EPD apparatus with voltage and time process 10V and 5 minutes, respectively, for each sample. The coating layer morphology was observed with Stereo Microscopy, Scanning Electron Microscopy (SEM) and the thickness was measured with Thickness Gauge. The result shows that the size of the particle determines the coating layer characteristics. The best of HA coating quality according to the implant coating standard is obtained for the 25 µm particle size with the surface coverage is 99%. The thickness is 121 µm and the ratio of chemical composition Calcium and Phosphor Ca/P) is 1,49%. These may be concluded that, on the point of view physical characteristics, natural HA from bovine bone has potential enough as a coating layer to improve the bioactivity implant for biomedical application. However, the mechanical characteristic of the layer is still needed to determine the strength of coating layer for avoiding delamination during application.

2020 ◽  
Vol 1000 ◽  
pp. 97-106
Author(s):  
Dian Juliadmi ◽  
Nuzul Ficky Nuswantoro ◽  
Hidayatul Fajri ◽  
Irma Yulia Indriyani ◽  
Jon Affi ◽  
...  

Research about the utilization of titanium alloy (Ti-6Al-4V ELI) as implant material in the treatment of orthopedic cases had been increasing. Health problems appear due to the drawbacks of using titanium. The lack of titanium using is bio-inertness characteristic, which decreasing its bioactivity and results in low bone growth and effect for implant failure. The titanium can be modified with coating on the surface using a bioactive substance that is natural-source hydroxyapatite. Bovine-source hydroxyapatite (bovineHA) contains apatite component that is similar to human bone apatite. The coating process was carried out using particle size variation (25 μm, 63 μm, and 125 μm) of bovineHA. The electrophoretic deposition (EPD) method was applied to coat hydroxyapatite with 10 volt for 5 minutes onto the titanium surface. The result showed that different size particles have an effect on coating properties. The coating composed by particle-sized 25 μm has better surface coverage (95.89%), indicating more particle mass (particle weight 6.97x103 μg) attached to surface material, thus resulting thick coating. The good coating characteristic using bovine-source hydroxyapatite with small particle size was expected can be used in biomedical applications due to fulfill the prerequisite of the bone implant.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Agus Pramono ◽  
Gerald Ensang Timuda ◽  
Ganang Pramudya Ahmad Rifai ◽  
Deni Shidqi Khaerudini

Spinel-based hydroxyapatite composite (SHC) has been synthesized utilizing bovine bones as the source of the hydroxyapatite (HAp) and beverage cans as the aluminum (Al) source. The bovine bones were defatted and calcined in the air atmosphere to transform them into hydroxyapatite. The beverage cans were cut and milled to obtain fine Al powder and then sieved to obtain three different particle mesh size fractions: +100#, −140# + 170#, and −170#, or Al particle size of >150, 90–150, and <90 µm, respectively. The SHC was synthesized using the self-propagating intermediate-temperature synthesis (SIS) method at 900 °C for 2 h with (HAp:Al:Mg) ratio of (87:10:3 wt.%) and various compaction pressure of 100, 171, and 200 MPa. It was found that the mechanical properties of the SHC are influenced by the Al particle size and the compaction pressure. Smaller particle size produces the tendency of increasing the hardness and reducing the porosity of the composite. Meanwhile, increasing compaction pressure produces a reduction of the SHC porosity. The increase in the hardness is also observed by increasing the compaction pressure except for the smallest Al particle size (<90 µm), where the hardness instead becomes smaller.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 971
Author(s):  
Oktawian Bialas ◽  
Mateusz Lis ◽  
Anna Woźniak ◽  
Marcin Adamiak

This paper analyses the possibility of obtaining surface-infused nano gold particles with the polyether ether ketone (PEEK) using picosecond laser treatment. To fuse particles into polymer, the raw surface of PEEK was sputtered with 99.99% Au and micromachined by an A-355 laser device for gold particle size reduction. Biomimetic pattern and parameters optimization were key properties of the design for biomedical application. The structures were investigated by employing surface topography in the presence of micron and sub-micron features. The energy of the laser beam stating the presence of polymer bond thermalisation with remelting due to high temperature was also taken into the account. The process was suited to avoid intensive surface modification that could compromise the mechanical properties of fragile cardiovascular devices. The initial material analysis was conducted by power–depth dependence using confocal microscopy. The evaluation of gold particle size reduction was performed with scanning electron microscopy (SEM), secondary electron (SE) and quadrant backscatter electron detector (QBSD) and energy dispersive spectroscopy (EDS) analysis. The visibility of the constituted coating was checked by a commercial grade X-ray that is commonly used in hospitals. Attempts to reduce deposited gold coating to the size of Au nanoparticles (Au NPs) and to fuse them into the groove using a laser beam have been successfully completed. The relationship between the laser power and the characteristics of the particles remaining in the laser irradiation area has been established. A significant increase in quantity was achieved using laser power with a minimum power of 15 mW. The obtained results allowed for the continuation of the pilot study for augmented research and material properties analysis.


2018 ◽  
Vol 27 (01n02) ◽  
pp. 1840002 ◽  
Author(s):  
Machhindra Koirala ◽  
Jia Woei Wu ◽  
Adam Weltz ◽  
Rajendra Dahal ◽  
Yaron Danon ◽  
...  

We present a cost effective and scalable approach to fabricate solid state thermal neutron detectors. Electrophoretic deposition technique is used to fill deep silicon trenches with 10B nanoparticles instead of conventional chemical vapor deposition process. Deep silicon trenches with width of 5-6 μm and depth of 60-65 μm were fabricated in a p-type Si (110) wafer using wet chemical etching method instead of DRIE method. These silicon trenches were converted into continuous p-n junction by the standard phosphorus diffusion process. 10B micro/nano particle suspension in ethyl alcohol was used for electrophoretic deposition of particles in deep trenches and iodine was used to change the zeta potential of the particles. The measured effective boron nanoparticles density inside the trenches was estimated to be 0.7 gm cm-3. Under the self-biased condition, the fabricated device showed the intrinsic thermal neutron detection efficiency of 20.9% for a 2.5 × 2.5 mm2 device area.


2014 ◽  
Vol 59 (3) ◽  
pp. 677-690 ◽  
Author(s):  
Jolanta Marciniak-Kowalska ◽  
Tomasz Niedoba ◽  
Agnieszka Surowiak ◽  
Tadeusz Tumidajski

Abstract This paper presents a comparative analysis of two types of coal taken from the ZG Janina and ZG Wieczorek coalmines. The aim of this study has been to analyze the suitability of the coal in the context of the gasification process. The types of coal vary considerably in terms of their characteristics. Each of them was subjected to treatment in a ten-ringed annular jig. A particle size of 0-18 mm constituted the feed. The separated coal was divided into five layers, each of them containing material from two additional annular jigs. Analysis of their characteristics was carried out for each of the five layers and for both types of coal obtained, taking into account both their physicochemical properties as well as chemical ones. Each of these characteristics was then presented in three-dimensional surface diagrams, where the ordinate (or Y-axis) and abscissa (X-axis) was the particle size and height in which the material ended up in the jig (expressed as a percentage of the total height of the device). On the basis of observations, it was found that the types of coal have different potential for gasification, although both types are within the limits specified on the basis of previous studies. A correlation analysis between particle size and remaining characteristics of coal was carried out for each of the layers, allowing to determine which of the studied characteristics induced changes significant from the point of view of the coal gasification process. The entire research and observation was supported by conclusions and findings, which shall form the basis for further, in-depth analysis of coal.


2015 ◽  
Vol 654 ◽  
pp. 218-223 ◽  
Author(s):  
Alexander Heinemann ◽  
Sven Koenen ◽  
Kerstin Schwabe ◽  
Christoph Rehbock ◽  
Stephan Barcikowski

Electrophoretic deposition of ligand-free platinum nanoparticles has been studied to elucidate how wettability, indicated by contact angle measurements, is linked to vital parameters of the electrophoretic deposition process. These parameters, namely the colloid concentration, electric field strength and deposition time, have been systematically varied in order to determine their influence on the contact angle. Additionally, scanning electron microscopy has been used to confirm the homogeneity of the achieved coatings.


Sign in / Sign up

Export Citation Format

Share Document