Effect of Solution Heat Treatment on Microstructure and Mechanical Properties of Al-Mg-Si Alloy

2020 ◽  
Vol 1003 ◽  
pp. 26-30
Author(s):  
Kai Xin Chen ◽  
Li Zhen Yan ◽  
Yong An Zhang ◽  
Xi Wu Li ◽  
Zhi Hui Li ◽  
...  

Effects of different solution treatments on microstructure, texture and mechanical properties of 6A16 aluminum alloy sheet were investigated by electron back-scattered diffraction (EBSD) and tensile test. The results show that among the five solution treatments, with the increase of solution temperature and solution time, the average grain size increases and the yield strength of the alloy sheet gradually increases. The maximum elongation at break of the sheet is at 545 °C, and it increases with the increase of solution time. Therefore, the mechanical properties of the sheet are the best when the solution treatment is 545 °C for 5 min.

2014 ◽  
Vol 915-916 ◽  
pp. 576-582 ◽  
Author(s):  
H. C. Wu ◽  
B. Yang ◽  
Ming Xian Zhang ◽  
Sheng Long Wang ◽  
Y. Z. Shi

The effect of forging and solution temperature on the microstructure and mechanical properties of 316LN stainless steel has been investigated by optical microscope, tensile testing machine and scanning electron microscope (SEM). The results show that the average grain size of the steel was refined from 150μm to 70μm after forging and solution treatment. With increasing solution temperature, the tensile strength and yield strength decreased. On the contrary, the elongation of the steel increased with increasing solution temperature except at 1200°C. The tensile strength of the samples forged at 1100°C is better than those of the samples forged at 1000 and 1200°Cafter solution treatment. Tensile fracture morphologies observation showed that all the specimens have ductile fracture morphologies. With increasing solution temperature, the toughness of the steel becomes better and better except at 1200°C. Both the microstructure and mechanical properties of the 316LN stainless steel have been improved after forging at 1100°C and following by solution treatment at 1150°C.


2011 ◽  
Vol 306-307 ◽  
pp. 548-552
Author(s):  
Jun Li ◽  
Yan Wei Sui ◽  
Ai Hui Liu ◽  
Xin Zhao ◽  
Zhi Sun

Al-Cu alloy castings are obtained in the vertical centrifugal field. The effects of solution treatment on the microstructures and mechanical properties of Al-Cu alloy casting were studied by OM, micro hardness tester and room temperature tension and compression test. The results show that, the strength, micro hardness and elongation percentage of Al-Cu alloy casting increase firstly and then decrease as the solution temperature increases, and the mechanical properties reach the maximum values as the solution temperature increases to 530°C. As solution time increasing, the mechanical properties of Al-Cu alloy casting increase firstly and then decrease. When the solution time is up to 6 hours, the mechanical properties reach maximum value.


2018 ◽  
Vol 157 ◽  
pp. 02053 ◽  
Author(s):  
Eva Tillová ◽  
Mária Chalupová ◽  
Lenka Kuchariková ◽  
Juraj Belan ◽  
Denisa Závodská

The effect of solution treatment on mechanical properties (UTS, elongation, Brinell hardness) and microstructure (Si-morphology and Si-size) of an aluminium alloy (A356) used for casting cylinder heads was studied. The tests were carried out with specimens machined from the bulkheads of V8 engine blocks cast by the low pressure process. The samples were tested in as-cast and T6 heat treating conditions (solution heat treatment at 530°C with different time - 2, 3, 4, 5, 6, 7 hours, quenching in water at 20°C and precipitation hardened for 4 hour at 160°C). The results show that used heat treatment improves mechanical properties of the cylinder head casts. Tensile strength and hardness of specimens increase with solution treatment time. The hardness is a reflection of solution strengthening and silicon particle distribution in matrix. Solution temperature 530°C and 5 hours solution time is appropriate to obtain better morphology and distribution of Si particles in microstructure. Prolonged solution treatment (more than 5 hours) leads to a coarsening of the Si particles, while the numerical Si density decreases. As the particle density decreases, a fewer number of sites are available for crack nucleation, and hence, the fracture properties are improved. The data obtained from this study will be used to improve process control, and to help the selection of heat treatment of the casting for future products.


2017 ◽  
Vol 898 ◽  
pp. 1156-1162
Author(s):  
Xun Wang ◽  
Chao Zhao ◽  
Yan Gen Yu ◽  
Zong Qiang Luo ◽  
Wei Wen Zhang

The effects of solution treatment on the microstructure evolution of hot-extruded Cu-15Ni-8Sn alloy were investigated by optical microscope (OM), scanning electronic microscope (SEM), differential scanning calorimetry (DSC) and tensile testing, and the effects of solution temperature and time on the mechanical properties of the alloys were analyzed. The results indicated that, the γ-phases precipitated at first and then dissolved with the extension of the solution time during solutionizing at 800 C,the volume fraction of theγ-phase reached its peak at about 1h. However when solutionizing at 860°C, theγ-phase solely dissolved gradually with the extension of the solution time . In addition, a small amount of annealing twins appeared intragranular in the process of solution treatment. The γ-phase dissolution and the grain growth of α (Cu) were the main softening factors of the alloy during the solution treatment. Through overall consideration, the optimum solution treatment was annealing at 840°Cfor 1 h.


2020 ◽  
Vol 405 ◽  
pp. 357-364
Author(s):  
Lenka Kuchariková ◽  
Eva Tillová ◽  
Ivana Švecová

Al-Si-Cu alloy systems have a great importance in the casting industry due to their excellent castability, good mechanical properties and wear resistance. Addition of alloying elements, such as Mg and Cu, makes these alloys heat treatable. Improving of their mechanical properties allows their using in new, more demanding applications (e.g. engines, cylinder heads etc.). The most applied heat treatment for this alloy is a T6 (age hardening). Such a heat treatment is required for precipitation of the Al2Cu hardening dispersed phase that increases the mechanical properties of Al alloys. Therefore, the consequences of different solution heat treatment temperatures 505, 515 and 525 °C for AlSi9Cu3 and 515, 525 and 545 °C for AlSi12Cu1Fe cast alloys, with holding times 2, 4, 8, 16 and 32 hours, were investigated in this study. The effect of solution treatment was evaluated based on changes in microstructure (optical microscopy) and mechanical properties (hardness, impact energy and ultimate tensile strength). The study confirms the strengthening of the experimental alloys caused by application of optimum conditions of T6 and melting of the Cu-rich phases with application of inappropriate solution temperature, as well as distortion and changes of the testing bars.


2011 ◽  
Vol 194-196 ◽  
pp. 1225-1230
Author(s):  
Chang Chun Yang ◽  
Yong Lin Kang ◽  
Sheng Qin ◽  
Li Xin Wang

The effect of solution treatment from 1050°C to 1200°C, soaking time 15min on microstructure, mechanical properties and precipitation behavior of Cr20Ni32AlTi alloy was investigated. The results are as follows: with the increasing of the solution treatment temperature from 1050°C to 1200°C, the average grain size increases remarkably from 17μm to 110μm, the strength of alloy decreases while the elongation increases. The amount of carbide precipitation in the alloy decreases with the increasing of solid solution temperature. The optimum solution treatment temperature for the investigated Cr20Ni32AlTi alloy is 1150°C~1200°C.


2016 ◽  
Vol 838-839 ◽  
pp. 385-391
Author(s):  
Wen Jing Yang ◽  
Ji Zhong Li ◽  
Xue Wen ◽  
Hua Ding

Recently, friction stir processing (FSP), as an effective tool, has been employed to modify microstructures and mechanical properties of metal sheet. A novel technique of double surface friction stir processing (FSP) was proposed in this study. A 7050-T7451 aluminum alloy sheet of 6.5mm in thickness was processed by FSP with 30% overlap in each side. The position deviation of the stir pin from the upper surface to the bottom surface is 35%. Significant grain refinement with an average grain size of 2.5μm from the as-received 50μm, can be obtained after double-sided FSP. In comparison with the conventional FSP, no HAZ (heat affected zone) or TMAZ (thermal mechanical affected zone) was formed between the adjacent stir zones of the aluminum alloy sheet. At a strain rate of 10-3 s-1, a maximum elongation of 29.8% and 327% in transverse direction of FSP passes have been achieved at room temperature and 400°C, respectively.


2014 ◽  
Vol 852 ◽  
pp. 223-227
Author(s):  
Jun Ying Yi ◽  
Zhi Liang Ning ◽  
Dian Wei Yang ◽  
Hong Xue Zhang ◽  
Hai Chao Sun ◽  
...  

The effects of solution treatment on the grain size and microstructures of an Mg-4Y-3Nd-3Nd-0.5Zr alloy were investigated. Grain size increased slowly when treated at 500 oC and 525 oC, showing that the hindering effect of eutectic phase on grain growth can be ignored. The fitting relationship equations for average grain size vs. solution timehare=49.92t0.15and=45.44t0.15, respectively. When the solution temperature was increased to 550 oC, the fine dispersion phases was dissolved gradually, leading to a rapidly increase in grain size. The fitting relationship equations for vs.his=39.69t049.The grain growth exponent n at 550 oC is far higher than those at 500 oC and 525 oC.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 842
Author(s):  
Wenming Jin ◽  
Jianhao Yu ◽  
Zhiqiang Zhang ◽  
Hongjie Jia ◽  
Mingwen Ren

Contact solution treatment (CST) of Al–Zn–Mg–Cu alloys can shorten solution time to within 40 s in comparison with 1800 s with traditional solution treatment using a heating furnace. Heating temperature is the key factor in solution treatment. Considering the short heating time of CST, the ultra-high solution temperature over 500 °C of Al–Zn–Mg–Cu alloys was studied in this work. The effects of solution temperatures on the microstructures and the mechanical properties were investigated. The evolution of the second phases was explored and the strengthening mechanisms were also quantitatively evaluated. The results showed that solution time could be reduced to 10 s with the solution temperature of 535 °C due to the increasing dissolution rate of the second phase and the tensile strength of the aged specimen could reach 545 MPa. Precipitation strengthening was the main strengthening mechanism, accounting for 75.4% of the total strength. Over-burning of grain boundaries occurred when the solution temperature increased to 555 °C, leading to the deterioration of the strength.


2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


Sign in / Sign up

Export Citation Format

Share Document