Analysis of Defect-Free Hot Filament CVD-Grown 3C-SiC

2020 ◽  
Vol 1004 ◽  
pp. 126-131
Author(s):  
Bart Van Zeghbroeck ◽  
Ryan Brow ◽  
Tomoko Borsa ◽  
David Bobela

Analysis of hot-filament CVD (HF-CVD) growth of high quality 3C-SiC on micron-sized 3C-SiC mesas is presented. Two types of growth were observed: 1) a relatively slow growth at about 1μm/hour, and 2) an almost three times faster growth, correlated with the presence of domain boundaries in, or adjacent to, the mesas. Both reveal well-defined crystallographic facets and sharp corners between them. The slower growth has been identified to be surface-nucleation-limited, seemingly defect-free, while the faster growth has been identified as being caused by defect-induced step-flow growth. A growth model is presented, yielding a growth rate of 1.18 μm/h for the defect free {111} and (100) plane and 2.8 μm/h for {110} planes.

2018 ◽  
Vol 924 ◽  
pp. 120-123 ◽  
Author(s):  
Bart van Zeghbroeck ◽  
Hannah Robinson ◽  
Ryan R. Brow

Hot filament CVD (HFCVD) growth of undoped 4H-SiC epitaxial layers on 100 mm n-type 4o-off 4H-SiC substrates is presented as an alternate growth method for the first time. High quality crystalline material with a low density of polytype inclusions has been demonstrated and characterized with optical micrographs, SEM imaging, micro-Raman measurements, and high resolution XRD. Typical growth rates are ~3 μm/hour. Double rocking omega scans revealed diffraction peaks with a FWHM of 23 arcsec.


2000 ◽  
Vol 640 ◽  
Author(s):  
S. Nishino ◽  
T. Nishiguchi ◽  
Y. Masuda ◽  
M. Sasaki ◽  
S. Ohshima

ABSTRACTSublimation growth of 6H-SiC was performed on {1100} and {1120} substrates. The difference between the growth on {1100} plane and {1120} plane was observed. {1100} facet was almost flat and there were grooves oriented toward <1120> direction. The step bunching was observed on {1100} plane 5° off-axis. A lot of pits were introduced on {1120} plane of the crystal grown both on {1100} and {1120} substrates. Step flow growth toward <1120> direction created the pits on {1120} plane. It was important to grow crystal by layer by layer growth on {1120} plane. By changing the growth mode from step flow growth to layer by layer growth, pit on the {1120} plane may be reduced as same as CVD growth on {1120} plane. Growth temperature and C/Si ratio should be optimized to keep layer by layer growth.


1999 ◽  
Vol 584 ◽  
Author(s):  
H Hibino ◽  
Y. Homma ◽  
T. Ogino

AbstractWe describe three different aspects of the self-organization of steps and domain boundaries of a 7×7 reconstruction on SI(111) surfaces. The first is the formation of a triangular-tiled pattern of “1×1’ and 7×7 domains during the phase transition. ‘1÷1’ and 7×7 domains have different surface stresses. The triangular-tiled pattern is stabilized through stress relaxation. The second is the step arrangement inside a hole, which was fabricated by a standard lithographic technique. The step arrangement in the hole depends on the temperature. Below the ‘1×1’-to-7×7 phase transition, the hole has a three-fold symmetry consisting of step-bunched and non-bunched regions. This is because the step arrangement on the vicinal Si(111) surfaces depends on the direction of the steps. The third aspect is the formation of a pattern of steps and domain boundaries induced by Si growth. During the step-flow growth on Si(111), steps preferentially protrude along the domain boundaries on the lower terrace. The resulting changes in step shape induce a unique rearrangement of the domain boundaries, the number of which decreases during growth. However, when a periodic pattern is formed in the initial stages, it remains stable during growth.


2017 ◽  
Author(s):  
Marco Natali ◽  
Daniele Passeri ◽  
Marco Rossi ◽  
Theodoros Dikonimos ◽  
Nicola Lisi

2013 ◽  
Vol 1 (46) ◽  
pp. 7703 ◽  
Author(s):  
B. B. Wang ◽  
K. Ostrikov ◽  
T. van der Laan ◽  
K. Zheng ◽  
J. J. Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1035
Author(s):  
Ivan Shtepliuk ◽  
Volodymyr Khranovskyy ◽  
Arsenii Ievtushenko ◽  
Rositsa Yakimova

The growth of high-quality ZnO layers with optical properties congruent to those of bulk ZnO is still a great challenge. Here, for the first time, we systematically study the morphology and optical properties of ZnO layers grown on SiC substrates with off-cut angles ranging from 0° to 8° by using the atmospheric pressure meta–organic chemical vapor deposition (APMOCVD) technique. Morphology analysis revealed that the formation of the ZnO films on vicinal surfaces with small off-axis angles (1.4°–3.5°) follows the mixed growth mode: from one side, ZnO nucleation still occurs on wide (0001) terraces, but from another side, step-flow growth becomes more apparent with the off-cut angle increasing. We show for the first time that the off-cut angle of 8° provides conditions for step-flow growth of ZnO, resulting in highly improved growth morphology, respectively structural quality. Temperature-dependent photoluminescence (PL) measurements showed a strong dependence of the excitonic emission on the off-cut angle. The dependences of peak parameters for bound exciton and free exciton emissions on temperature were analyzed. The present results provide a correlation between the structural and optical properties of ZnO on vicinal surfaces and can be utilized for controllable ZnO heteroepitaxy on SiC toward device-quality ZnO epitaxial layers with potential applications in nano-optoelectronics.


2007 ◽  
Vol 16 (3) ◽  
pp. 609-615 ◽  
Author(s):  
S. Konoplyuk ◽  
T. Abe ◽  
T. Takagi ◽  
T. Uchimoto

2000 ◽  
Vol 214-215 ◽  
pp. 606-609 ◽  
Author(s):  
T Passow ◽  
H Heinke ◽  
D Kayser ◽  
K Leonardi ◽  
D Hommel

2001 ◽  
Vol 673 ◽  
Author(s):  
A. Maxwell Andrews ◽  
J.S. Speck ◽  
A.E. Romanov ◽  
M. Bobeth ◽  
W. Pompe

ABSTRACTAn approach is developed for understanding the cross-hatch morphology in lattice mismatched heteroepitaxial film growth. It is demonstrated that both strain relaxation associated with misfit dislocation formation and subsequent step elimination (e.g. by step-flow growth) are responsible for the appearance of nanoscopic surface height undulations (0.1-10 nm) on a mesoscopic (∼100 nm) lateral scale. The results of Monte Carlo simulations for dislocation- assisted strain relaxation and subsequent film growth predict the development of cross-hatch patterns with a characteristic surface undulation magnitude ∼50 Å in an approximately 70% strain relaxed In0.25Ga0.75As layers. The model is supported by atomic force microscopy (AFM) observations of cross-hatch morphology in the same composition samples grown well beyond the critical thickness for misfit dislocation generation.


1999 ◽  
Vol 74 (2) ◽  
pp. 194-196 ◽  
Author(s):  
Oleg A. Louchev ◽  
Yoichiro Sato

Sign in / Sign up

Export Citation Format

Share Document