Investigation on the Effect of Total Loss Reduction of HV Power Module by Using SiC-MOSFET Embedding SBD

2020 ◽  
Vol 1004 ◽  
pp. 801-807
Author(s):  
Takaaki Tominaga ◽  
Shiro Hino ◽  
Yohei Mitsui ◽  
Junichi Nakashima ◽  
Koutarou Kawahara ◽  
...  

A total loss reduction of 3.3 kV power module by using SiC-MOSFET embedding SBD has been demonstrated through the investigation of DC characteristics and switching characteristics. Despite 1.1 times larger on-resistance than that of conventional SiC-MOSFET due to larger cell pitch, superior switching characteristics of SiC-MOSFET embedding SBD, which are due to smaller total chip area than that of SiC-MOSFET coupled with external SBD and due to elimination of recovery charge by minority carrier injection compared with SiC-MOSFET utilizing its body diode, enable the total loss reduction especially for high frequency operation.

2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000056-000060 ◽  
Author(s):  
Z. Cole ◽  
B. S. Passmore ◽  
B. Whitaker ◽  
A. Barkley ◽  
T. McNutt ◽  
...  

In high frequency power conversion applications, the dominant mechanism attributed to power loss is the turn-on and -off transition times. To this end, a full-bridge silicon carbide (SiC) multi-chip power module (MCPM) was designed to minimize parasitics in order to reduce over-voltage/current spikes as well as resistance in the power path. The MCPM was designed and packaged using high temperature (> 200 °C) materials and processes. Using these advanced packaging materials and devices, the SiC MCPM was designed to exhibit low thermal resistance which was modeled using three-dimensional finite-element analysis and experimentally verified to be 0.18 °C/W. A good agreement between the model and experiment was achieved. MCPMs were assembled and the gate leakage, drain leakage, on-state characteristics, and on-resistance were measured over temperature. To verify low parasitic design, the SiC MCPM was inserted into a boost converter configuration and the switching characteristics were investigated. Extremely low rise and fall times of 16.1 and 7.5 ns were observed, respectively. The boost converter demonstrated an efficiency of > 98.6% at 4.8 kW operating at a switching frequency of 250 kHz. In addition, a peak efficiency of 96.5% was achieved for a switching frequency of 1.2 MHz and output power of 3 kW.


2016 ◽  
Vol 858 ◽  
pp. 1066-1069 ◽  
Author(s):  
Shinya Sato ◽  
Hidekazu Tanisawa ◽  
Takeshi Anzai ◽  
Hiroki Takahashi ◽  
Yoshinori Murakami ◽  
...  

In this paper, we describe a power module fabricated using SiC metal–oxide–semiconductor field-effect transistors (MOSFETs). A C-R snubber is integrated into this power module for reduction of the surge voltage and dumping of the voltage ringing. The four SiC MOSFETs are sandwiched between active metal copper (AMC) substrates. The surfaces of the SiC MOSFETs are attached to AMC substrates by Al bumps, owing to which the power module shows low inductance. Moreover, this power module ensures credibility and reliability at higher operating temperatures beyond 200 °C. The switching characteristics of the module are studied experimentally for high-temperature and high-frequency operations.


2000 ◽  
Author(s):  
William J. Siskaninetz ◽  
Hank D. Jackson ◽  
James E. Ehret ◽  
Jeffrey C. Wiemeri ◽  
John P. Loehr

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 23786-23794
Author(s):  
Abhishek Kar ◽  
Mitiko Miura-Mattausch ◽  
Mainak Sengupta ◽  
Dondee Navaroo ◽  
Hideyuki Kikuchihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document