scholarly journals Heat-Treated Wood as a Substrate for Coatings, Weathering of Heat-Treated Wood, and Coating Performance on Heat-Treated Wood

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Vlatka Jirouš-Rajković ◽  
Josip Miklečić

Heat treatment is a method of wood modification with increasing market acceptance in Europe. The major patented European commercial heat treatment processes have trade names ThermoWood, Platowood, Retiwood, Le Bois Perdure, and Oil-Heat-Treated Wood (OHT). To what extent modification of wood affects the resistance of wood to weathering is also an important aspect for wood applications, especially where appearance is important. Unfortunately, heat-treated wood has poor resistance to weathering, and surface treatment with coatings is required for both protection and aesthetic reasons. As a substrate for coating, heat-treated wood has altered characteristics such as lower hygroscopicity and liquid water uptake and changed acidity, wettability, surface free energy, and anatomical microstructure. Various wood species, heat treatment method, treatment intensity, and treatment conditions exhibited a different extent of changes in wood properties. These altered properties could affect coating performance on heat-treated wood. The reported changes in acidity and in surface energy due to heat treatments are inconsistent with one another depending on wood species and temperature of the treatments. This paper gives an overview of the research results with regards to properties of heat-treated wood that can affect coating performance and weathering of uncoated and coated heat-treated wood.

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 225 ◽  
Author(s):  
Mojgan Nejad ◽  
Mahdi Dadbin ◽  
Paul Cooper

Thermal modification and the degree of improved properties from the treatment depend on wood species and treatment parameters. Southern yellow pine and spruce are two wood species commonly used for decking, fences, and siding in North America. This study evaluated coating performance when applied on oil-heat-treated Southern pine and spruce wood samples. Moisture content, color, and gloss changes of samples were analyzed before weathering and then after each month for the first three months and then every six months during 18 months of natural weathering exposure in Toronto, Canada. The results showed that coated heat-treated woods had lower moisture uptake, lower color change, and overall better appearance ranking than coated-untreated wood samples. Coated-spruce wood samples had lower checking and splitting, and in general, much better performance than coated-Southern pine treated samples. Notably, the average moisture content of treated spruce wood samples was significantly lower than that of Southern pine, which explains lower checking and improved coatings’ appearance.


Author(s):  
Osita Obiukwu ◽  
Henry Udeani ◽  
Progress Ubani

The effect of various heat treatment operations (annealing, normalizing, tempering) on mechanical properties of 0.35% carbon steel was investigated. The change in the value of endurance limit of the material as a result of the various heat-treatment operations were studied thoroughly. It was found that the specimens tempered at low temperature (200°C) exhibited the best fatigue strength. Microscope was used to characterize the structural properties resulting from different heat treatment processes. The results from the tensile tests impact tests and hardness tests showed that the mechanical properties variate at every heat-treatment conditions. The microstructure of differently heat-treated steels was also studied.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 9531-9543
Author(s):  
Ekrem Durmaz ◽  
Tutku Ucuncu ◽  
Mehmet Karamanoglu ◽  
Alperen Kaymakci

Heat treatment of wood materials is generally performed to improve the physical, mechanical, chemical, surface, thermal, and crystallinity characteristics. In this way, the usage areas of wood material in different purposes can be expanded by means of heat treatment. The goal of this study was to determine the physical, mechanical, chemical, crystallinity, and surface properties of heat-treated Scots pine (Pinus sylvestris L.) wood. The test samples were heat-treated at 120 °C, 150 °C, 180 °C, and 210 °C for 4 and 6 h in a laboratory-scale oven. The shrinking and swelling chracteristics of wood was decreased as a function of heat treatment processes. Bending strength, compression strength, and modulus of elasticity decreased. In addition, lignin ratios and crystallinity index increased as temperature and duration of the treatment were increased. Consequently, heat-treated wood materials can be used in various areas by developing some of their properties.


2017 ◽  
Vol 891 ◽  
pp. 389-394
Author(s):  
Siriwan Sakultanchareonchai ◽  
Torranin Chairuangsri ◽  
S. Imurai ◽  
Ekasit Nisaratanaporn

Microstructural and mechanical development of the various heat-treated 935 Ag-Cu alloys were explored. The heat-treatment processes were applied viz. holding before quenching for 2 and 15 min, homogenization at 750 °C for 60 min followed by water quenching, and aging at 350 °C for 15 to 60 min followed by water quench. It was found that the specimens with copper addition gave a high resiliency in all heat treatment conditions however the effect of homogenization with aging treatment fostered deep blemish or fire scale on its surface. The amplifications of resiliency of 935 heat-treated AgCuSn and AgCuBe alloy were increased but elongation values were slightly reduced. The 935 AgCuBeSn specimens produced adequate resiliency and elongation after aging at 350 °C for 15 to 60 min followed by water quenching. Partial dissolution and spheroidization of eutectic phase were occurred by homogenization treatment at 750 °C. Aging treatment promoted precipitation of 3-20 nm fcc (Cu,Sn)–rich precipitates and engendered an improvement of hardness, yield strength and the modulus of resilience or resiliency.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1520
Author(s):  
Ender Hazir

The aim of this work is to improve the heat-treated wood coating performance using experimental design methodology and air–plasma treatment. Firstly, two different heat treatment processes were applied to the wood samples. In the second stage of the study, air–atmospheric plasma treatment was applied to heat-treated samples. These samples were coated with water-based varnish. Adhesion strength and colour change values of these samples before and after the artificial weathering test were measured. The design of experiments method was used to investigate the significant factors. The heat treatment process (212 °C—1 h and 212 °C—2 h) and atmospheric plasma treatment parameters (pressure, distance, and feed) were selected as independent variables, while adhesion strength and colour change were determined as dependent variables. The factors affecting the surface coating performance before and after the artificial weathering test were evaluated by analysis of variance (ANOVA) and Pareto plot. In addition, the factor levels that maximise the adhesion strength value and minimise the colour change were found using the multiobjective optimisation technique. According to the multiobjective optimisation method, results of treatment feed, working distance, and pressure of 60 mm/s, 7.69 mm, and 1 bar were considered as optimum plasma treatment conditions, respectively, for heat treatment process A. Corresponding values for the heat treatment process B were 60 mm/s, 10 mm, and 2 bar.


Author(s):  
Abhijit Biswas ◽  
Suman Kalyan Das ◽  
Prasanta Sahoo

The microstructural changes of electroless Ni–P–Cu coating at various heat-treatment conditions are investigated to understand its implications on the tribological behavior of the coating. Coatings are heat-treated at temperatures ranging between 200°C and 800 °C and for 1–4 h duration. Ni–P–Cu coatings exhibit two-phase transformations in the temperature range of 350–450 °C and the resulting microstructural changes are found to significantly affect their thermal stability and tribological attributes. Hardness of the coating doubles when heat-treated at 452 °C, due to the formation of harder Ni3P phase and crystalline NiCu. Better friction and wear performance are also noted upon heat treatment of the coating at the phase transformation regime, particularly at 400 °C. Wear mechanism is characterized by a mixed adhesive cum abrasive wear phenomena. Heat treatment at higher temperature (600 °C and above) and longer duration (4 h) results in grain coarsening phenomenon, which negatively influences the hardness and tribological characteristics of the coating. Besides, diffusion of iron from the ferrous substrate as well as greater oxide formation are noticed when the coating is heat-treated at higher temperatures and for longer durations (4 h).


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5574-5585
Author(s):  
Intan Fajar Suri ◽  
Jong Ho Kim ◽  
Byantara Darsan Purusatama ◽  
Go Un Yang ◽  
Denni Prasetia ◽  
...  

Color changes were tested and compared for heat-treated Paulownia tomentosa and Pinus koraiensis wood treated with hot oil or hot air for further utilization of these species. Hot oil and hot air treatments were conducted at 180, 200, and 220 °C for 1, 2, and 3 h. Heat-treated wood color changes were determined using the CIE-Lab color system. Weight changes of the wood before and after heat treatment were also determined. The weight of the oil heat-treated wood increased considerably but it decreased in air heat-treated wood. The oil heat-treated samples showed a greater decrease in lightness (L*) than air heat-treated samples. A significant change in L* was observed in Paulownia tomentosa. The red/green chromaticity (a*) of both wood samples increased at 180 and 200 °C and slightly decreased at 220 °C. The yellow/blue chromaticity (b*) in both wood samples increased at 180 °C, but it rapidly decreased with increasing treatment durations at 200 and 220 °C. The overall color change (ΔE*) in both heat treatments increased with increasing temperature, being higher in Paulownia tomentosa than in Pinus koraiensis. In conclusion, oil heat treatment reduced treatment duration and was a more effective method than air heat treatment in improving wood color.


2021 ◽  
Vol 410 ◽  
pp. 37-41
Author(s):  
Natalia A. Astafeva ◽  
Andrey A. Balanovskiy ◽  
Anna A. Pershina

The article analyzes the results of a study of the influence of zonal heat treatment on the structure of welded joints of pipeline elements made of titanium alloys Ti-3.5Al-1.5Mn. In the manufacture of such structures, the TIG welding method is used to join pipe elements, after which the heat treatment method can be used to relieve residual stresses. The experiments have confirmed the effectiveness of zonal heat treatment preceded by welding. It was revealed that for welded joints made of titanium alloys, heat treatment can stabilize the structure. In experiments conducted by the method of optical metallography, the structure of heat treated and untreated welded joints was investigated. The influence of heat treatment on the weld structure and heat-affected zone was identified.


2014 ◽  
Vol 2 ◽  
pp. 345-352 ◽  
Author(s):  
Cristina Marinela Olarescu ◽  
Mihaela Campean

Heat treatment is renowned as the most environmentally friendly process of dimensional stabilization that can be applied to wood, in order to make it suitable for outdoor uses. It also darkens wood color and improves wood durability. The intensity of heat treatment can be appreciated by means of two parameters: the color change occured in wood due to the high temperature, and the mass loss, which is a measure of the degree of thermal degradation. In order to find a mathematical correlation between these two parameters, an experimental study was conducted with four European wood species, which were heat-treated at 180°C and 200ºC, for 1-3 hours, under atmosheric pressure.The paper presents the results concerning the color changes and mass losses recorded for the heat-treated wood samples compared to untreated wood.  For all four species, the dependency between the color change and the mass loss was found to be best described by a logarithmic regression equation with R2 of 0.93 to 0.99 for the soft species (spruce, pine and lime), and R2 of 0.77 for beech. The results of this study envisage to simplify the assessment procedure of the heat treatment efficiency, by only measuring the color – a feature that is both convenient and cost-effective. 


Sign in / Sign up

Export Citation Format

Share Document