Experimental Investigation on the Heat Dissipation Performance of Bismuth-Based Alloy Thermal Conductive Sheet

2021 ◽  
Vol 1035 ◽  
pp. 655-662
Author(s):  
Qian Yu Wang ◽  
Chang Li Cai ◽  
Zhong Shan Deng

At present, the existing thermal interface materials (TIMs) cannot meet the heat dissipation requirements of some high-power density electronic devices. In this study, Bi-based low melting point alloy was made into a thermal conductive sheet to reduce the interface thermal resistance. The thermal conductivity of a thermal conductive sheet was found to be 37.83 W/(m·K), 10 times higher than Dow Corning 5021 thermal grease. In addition, the surface morphology of the Bi-based alloy thermal conductive sheet was changed in this experiment, which was divided into textured and planer type, and the measured interface thermal resistance values lower than Dow Corning 5021 thermal grease by approximately 30% and 27%, respectively. The results prove this Bi-based alloy thermal conductive sheets have the ideal heat dissipation performance and their wide application prospects in high-power density electronic devices.

2021 ◽  
Vol 79 (6) ◽  
pp. 631-640
Author(s):  
Takaaki Tsunoda ◽  
Takeo Tsukamoto ◽  
Yoichi Ando ◽  
Yasuhiro Hamamoto ◽  
Yoichi Ikarashi ◽  
...  

Electronic devices such as medical instruments implanted in the human body and electronic control units installed in automobiles have a large impact on human life. The electronic circuits in these devices require highly reliable operation. Radiographic testing has recently been in strong demand as a nondestructive way to help ensure high reliability. Companies that use high-density micrometer-scale circuits or lithium-ion batteries require high speed and high magnification inspection of all parts. The authors have developed a new X-ray source supporting these requirements. The X-ray source has a sealed tube with a transmissive target on a diamond window that offers advantages over X-ray sources having a sealed tube with a reflective target. The X-ray source provides high-power-density X-ray with no anode degradation and a longer shelf life. In this paper, the authors will summarize X-ray source classification relevant to electronic device inspection and will detail X-ray source performance requirements and challenges. The paper will also elaborate on technologies employed in the X-ray source including tube design implementations for high-power-density X-ray, high resolution, and high magnification simultaneously; reduced system downtime for automated X-ray inspection; and reduced dosages utilizing quick X-ray on-and-off emission control for protection of sensitive electronic devices.


2013 ◽  
Vol 303-306 ◽  
pp. 1902-1907 ◽  
Author(s):  
Yi Bo Wu ◽  
Guo You Liu ◽  
Ning Hua Xu ◽  
Ze Chun Dou

As the IGBT power modules have promising potentials in the application of the field of traction or new energy, the higher power density and higher current rating of the IGBT module become more and more attractive. Thermal resistance is one of the most important characteristics in the application of power semiconductor module. A new 1500A/3300V IGBT module in traction application is developed successfully by Zhuzhou CSR Times Electric Co., Ltd (Lincoln). Thermal resistance management of this IGBT module with high power density is performed in this paper. Based on thermal nodes network, an equivalent circuit model for thermal resistance of power module is highlighted from which the steady state thermal resistance can be optimized by theoretical analysis. Furthermore, thermal numerical simulation of 1500A/3300V IGBT module is accomplished by means of finite element model (FEM). Finally, the thermal equivalent model of the IGBT module is verified by simulation results.


Author(s):  
Stephen M. Walsh ◽  
Bernard A. Malouin ◽  
Eric A. Browne ◽  
Kevin R. Bagnall ◽  
Evelyn N. Wang ◽  
...  

Author(s):  
J. H. Choi ◽  
B. H. Sung ◽  
J. H. Yoo ◽  
C. J. Kim ◽  
D.-A. Borca-Tasciuc

The implementation of high power density, multicore central and graphic processing units (CPUs and GPUs) coupled with higher clock rates of the high-end computing hardware requires enhanced cooling technologies able to attend high heat fluxes while meeting strict design constrains associated with system volume and weight. Miniature loop heat pipes (mLHP) emerge as one of the technologies best suited to meet all these demands. Nonetheless, operational problems, such as instable behavior during startup on evaporator side, have stunted the advent of commercialization. This paper investigates experimentally two types of mLHP systems designed for workstation CPUs employing disk shaped and rectangular evaporators, respectively. Since there is a strong demand for miniaturization in commercial applications, emphasis was also placed on physical size during the design stage of the new systems. One of the mLHP system investigated here is demonstrated to have an increased thermal performance at a reduced system weight. Specifically, it is shown that the system can reach a maximum heat transfer rate of 170 W with an overall thermal resistance of 0.12 K/W. The corresponding heat flux is 18.9 W/cm2, approximately 30% higher than that of larger size commercial systems. The studies carried out here also suggest that decreasing the thermal resistance between the heat source and the working fluid and maximizing the area for heat transfer are keys for obtaining an enhanced thermal performance.


2019 ◽  
Vol 126 (16) ◽  
pp. 165113
Author(s):  
R. Soleimanzadeh ◽  
R. A. Khadar ◽  
M. Naamoun ◽  
R. van Erp ◽  
E. Matioli

Sign in / Sign up

Export Citation Format

Share Document