Studying the Critical Buckling Load of FG Beam Using ANSYS

2021 ◽  
Vol 1039 ◽  
pp. 7-22
Author(s):  
Khetam S. Ateah ◽  
Luay S. Alansari

In this article, the critical buckling load of functionally graded beam is calculated using ANSYS APDL Software (version 17.2) under mechanical and thermal load. In mechanical load, the effects of length to thickness ratio, power law index and mode number on the non-dimension critical buckling load of fixed-fixed and fixed-free FG beam. The results show that the length to thickness ratio is not effect on the non-dimension critical buckling load while the power law index and mode number effect on the non-dimension critical buckling load. In thermal load, the critical buckling load for fixed-fixed and pinned-pinned FG beam depend on length to thickness ratio, power law index and mode number. The results show that the critical buckling load increases with decreasing length to thickness ratio.

2012 ◽  
Vol 12 (04) ◽  
pp. 1250025 ◽  
Author(s):  
S. C. MOHANTY ◽  
R. R. DASH ◽  
T. ROUT

This article presents the evaluation of static and dynamic behavior of functionally graded ordinary (FGO) beam and functionally graded sandwich (FGSW) beam for pined–pined end condition. The variation of material properties along the thickness is assumed to follow exponential and power law. A finite element method is used assuming first order shear deformation theory for the analysis. The element chosen is different from the conventional elements as the shape functions of the element are obtained from the exact solution of the static part of governing differential equation derived according to Hamilton's principle. Moreover, the shape functions depend on length, cross-section and material properties which ensure better accuracy of the solution. The effect of power law index on critical buckling load and natural frequencies of FGO beam is investigated. The critical buckling load of FGO beam with steel-rich bottom increases with power law index whereas the trend reverses for beam with Al-rich bottom. The first three natural frequencies of FGO beam are found to decrease to a minimum value and then increase as the power law index increases from one. The dynamic stability of FGO beam with steel-rich bottom is found to be more than that of beam with Al-rich bottom. An FGSW beam with alumina as bottom skin, steel top skin, and mixture of alumina and steel as core is chosen for analysis. The critical buckling load of FGSW beam increases with the increase of core thickness for variation of material properties in core as per power law with index more than one, whereas it decreases with the increase of core thickness for variation of material properties in core as per exponential law. The first three natural frequencies of the FGSW beam increase with the increase of FGM core for both the types of property distributions. The dynamic stability of the FGSW beam is enhanced as the thickness of the FGM core is increased.


2012 ◽  
Vol 28 (3) ◽  
pp. 439-452 ◽  
Author(s):  
A. M. Zenkour ◽  
M. Sobhy

AbstractThis paper deals with the static response of simply supported functionally graded material (FGM) viscoelastic sandwich plates subjected to transverse uniform loads. The FG sandwich plates are considered to be resting on Pasternak's elastic foundations. The sandwich plate is assumed to consist of a fully elastic core sandwiched by elastic-viscoelastic FGM layers. Material properties are graded according to a power-law variation from the interfaces to the faces of the plate. The equilibrium equations of the FG sandwich plate are given based on a trigonometric shear deformation plate theory. Using Illyushin's method, the governing equations of the viscoelastic sandwich plate can be solved. Parametric study on the bending analysis of FG sandwich plates is being investigated. These parameters include (i) power-law index, (ii) plate aspect ratio, (iii) side-to-thickness ratio, (iv) loading type, (v) foundation stiffnesses, and (vi) time parameter.


2017 ◽  
Vol 35 (3) ◽  
pp. 606-617 ◽  
Author(s):  
Hossein Nourmohammadi ◽  
Bashir Behjat

AbstractIn this article, the static response of the functionally graded piezoelectric (FGP) plates with piezoelectric layers (sandwich FGPM) is studied based on the first order shear deformation plate theory. The plate is under mechanical, electrical and thermal loadings and finite element method is employed to obtain the solution of the equation. All mechanical, thermal and piezoelectric properties, except Poisson ratio, obey the power law distribution through the thickness. By solving the governing equation, optimum value of power law index is investigated in each type of loading. The effects of different volume fraction index, layer arrangements, various boundary conditions and different loading types, are studied on the deflection of FGPM plate. It is inferred that, the correlations between the deflection, power law index and layer arrangement are completely different in the mechanical and thermal loading and the optimum value of the power law index should be selected in each case separately. This optimum values can be used as a design criterion to build a reliable sensors and actuators in thermal environments.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1412 ◽  
Author(s):  
Meifung Tam ◽  
Zhicheng Yang ◽  
Shaoyu Zhao ◽  
Jie Yang

This paper investigates the free vibration and compressive buckling characteristics of functionally graded graphene nanoplatelets reinforced composite (FG-GPLRC) beams containing open edge cracks by using the finite element method. The beam is a multilayer structure where the weight fraction of graphene nanoplatelets (GPLs) remains constant in each layer but varies along the thickness direction. The effective Young’s modulus of each GPLRC layer is determined by the modified Halpin-Tsai micromechanics model while its Poisson’s ratio and mass density are predicted according to the rule of mixture. The effects of GPLs distribution pattern, weight fraction, geometry, crack depth ratio (CDR), slenderness ratio as well as boundary conditions on the fundamental frequency and critical buckling load of the FG-GPLRC beam are studied in detail. It was found that distributing more GPLs on the top and bottom surfaces of the cracked FG-GPLRC beam provides the best reinforcing effect for improved vibrational and buckling performance. The fundamental frequency and critical buckling load are also considerably affected by the geometry and dimension of GPL nanofillers.


Author(s):  
A Naderi ◽  
A R Saidi

In this study, an analytical solution for the buckling of a functionally graded annular sector plate resting on an elastic foundation is presented. The buckling analysis of the functionally graded annular sector plate is investigated for two typical, Winkler and Pasternak, elastic foundations. The equilibrium and stability equations are derived according to the Kirchhoff's plate theory using the energy method. In order to decouple the highly coupled stability equations, two new functions are introduced. The decoupled equations are solved analytically for a plate having simply supported boundary conditions on two radial edges. Satisfying the boundary conditions on the circular edges of the plate yields an eigenvalue problem for finding the critical buckling load. Extensive results pertaining to critical buckling load are presented and the effects of boundary conditions, volume fraction, annularity, plate thickness, and elastic foundation are studied.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 931 ◽  
Author(s):  
Quoc Hoan Doan ◽  
Duc-Kien Thai ◽  
Ngoc Long Tran

In the practical design of thin-walled composite columns, component dimensions should be wisely designed to meet the buckling resistance and economic requirements. This paper provides a novel and useful investigation based on a numerical study of the effects of the section dimensions, thickness ratio, and slenderness ratio on the critical buckling load of a thin-walled composite strut under uniaxial compression. The strut was a channel-section-shaped strut and was made of glass fiber-reinforced polymer (GFRP) composite material by stacking symmetrical quasi-isotropic layups using the autoclave technique. For the purpose of this study, a numerical finite element model was developed for the investigation by using ABAQUS software. The linear and post-buckling behavior analysis was performed to verify the results of the numerical model with the obtained buckling load from the experiment. Then, the effects of the cross-section dimensions, thickness ratio, and slenderness ratio on the critical buckling load of the composite strut, which is determined using an eigenvalue buckling analysis, were investigated. The implementation results revealed an insightful interaction between cross-section dimensions and thickness ratio and the buckling load. Based on this result, a cost-effective design was recommended as a useful result of this study. Moreover, a demarcation point between global and local buckling of the composite strut was also determined. Especially, a new design curve for the channel-section GFRP strut, which is governed by the proposed constitutive equations, was introduced to estimate the critical buckling load based on the input component dimension.


2015 ◽  
Vol 15 (04) ◽  
pp. 1450058 ◽  
Author(s):  
Sukesh Chandra Mohanty ◽  
Rati Ranjan Dash ◽  
Trilochan Rout

In the present work, the vibration and dynamic stability of functionally graded ordinary (FGO) pre-twisted cantilever Timoshenko beam has been investigated. Finite element shape functions are established from differential equations of static equilibrium. Expressions for element stiffness and mass matrices are obtained from energy considerations. Floquet's theory is used to establish the stability boundary. The material properties along the thickness of the beam are assumed to vary according to the power law. The effects of power law index and pre-twist angle on the natural frequencies and dynamic stability of the beam have been investigated. Increase in pre-twist angle enhances the stability of the beam for first mode whereas it makes the beam more prone to parametric instability for the second mode. The increase in power law index is found to have a detrimental effect on the stability of the beam. The chance of parametric instability is enhanced with the increase in static load factor.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Mohammad Hossein Sharifan ◽  
Mohsen Jabbari

Abstract In this paper, mechanical buckling analysis of a functionally graded (FG) elliptical plate, which is made up of saturated porous materials and is resting on two parameters elastic foundation, is investigated. The plate is subjected to in-plane force and mechanical properties of the plate assumed to be varied through the thickness of it according to three different functions, which are called porosity distributions. Since it is assumed that the plate to be thick, the higher order shear deformation theory (HSDT) is employed to analyze the plate. Using the total potential energy function and using the Ritz method, the critical buckling load of the plate is obtained and the results are verified with the simpler states in the literature. The effect of different parameters, such as different models of porosity distribution, porosity variations, pores compressibility variations, boundary conditions, and aspect ratio of the plate, is considered and has been discussed in details. It is seen that increasing the porosity coefficient decreases the stiffness of the plate and consequently the critical buckling load will be reduced. Also, by increasing the pores' compressibility, the critical buckling load will be increased. Adding the elastic foundation to the structure will increase the critical buckling load. The results of this study can be used to design more efficient structures in the future.


Sign in / Sign up

Export Citation Format

Share Document