The Effects of Second Phase Particles, Dislocation Density and Grain Boundaries on the Electrical Conductivity of Aluminium Alloys

1996 ◽  
Vol 217-222 ◽  
pp. 975-980 ◽  
Author(s):  
J.Y. Barghout ◽  
Gordon W. Lorimer ◽  
R. Pilkington ◽  
Philip B. Prangnell
2007 ◽  
Vol 551-552 ◽  
pp. 645-650
Author(s):  
Min Wang ◽  
Hong Zhen Guo ◽  
Y.J. Liu

According to the characteristic of appearing cavitation in the metals during superplastic deformation, the influence of strain rate on cavity evolvement, the influence of cavity on superplastic deformation capability, and the formation, development process of cavity were investigated for Al-Cu-Mg alloy (i.e. coarse–grained LY12). The results show that: ①The pore nucleation occurs not only at triangle grain boundaries, but also along nearby the second phase particles, and even within grains. The cavities at the triangle grain boundaries are present in V-shape, others near the second phase particles and within grains are present in O-shape. These cavities may result from disharmony slippage of grain boundaries. ②The tendency of cavity development decreases with increasing of strain-rate. In lower strain-rate condition, though Al-Cu-Mg alloy has better superplasticity, many big cavities in the specimen may reduce the room temperature properties of the alloy. In higher strain-rate condition, Al-Cu-Mg alloy has certain superplasticity and room temperature properties as well as few cavities forming. By analyzing, viscous layer on grain boundaries is very thin and grain sizes can be refined during their extruding and rotating each other in higher strain-rate superplastic deformation condition. ③Growth and coalescence of cavity are the main reason of the superplastic fracture of Al-Cu-Mg alloy. And small and a certain amount of cavities with dispersion and independence state are very useful to crystal boundary slippage.


1983 ◽  
Vol 31 (9) ◽  
pp. 1315-1322 ◽  
Author(s):  
S. Dermarkar ◽  
P. Guyot ◽  
J. Pelissier

2017 ◽  
Vol 890 ◽  
pp. 327-330
Author(s):  
Kinga Rodak ◽  
Joanna Sobota ◽  
Wojciech Głuchowski

This paper focuses on the effect of rolling with cyclic movement of rolls (RCMR) on microstructure refinement, mechanical properties and electrical conductivity of CuCr0.6 alloy after applying different heat treatments (quenching and aging). It was found that the presence of second phase particles obtained during aging treatment has a significant effect on the formation of ultrafine grain (UFG) structure during the RCMR processing. The presence of high dislocation density inside subgrains and presence microshear bands are the marked features of the microstructure after aging at 500°C/2h and RCMR deformation. Whereas after aging at 700°C/24h and RCMR processing, fine precipitates were effective in inhibiting the grain/subgrain boundary motion. The RCMR processed alloy after aging at 500°C/2h shows high mechanical strength attributed to the high density of coherent precipitates and ultrafine grained structure. The RCMR processing induces a significant reduction of the electrical conductivity for samples at quenching state but for samples at aging state electrical conductivity was restored thanks to precipitation process.


2013 ◽  
Vol 753 ◽  
pp. 221-224 ◽  
Author(s):  
Krzysztof Sztwiertnia ◽  
Magdalena Bieda ◽  
Anna Korneva

In situ orientation mapping using TEM and calorimetric measurements were carried out to investigate the annealing behavior of cold-rolled 6013 aluminum alloy. The recrystallization of the material can be considered to be a number of processes that correspond to two separate stored energy release peaks. In the temperature range of the peak 1, the deformation zones around the large second-phase particles acted as sites for particle-stimulated nucleation. In the matrix, at the same time, some elongation of grains occurred. The elongated matrix grains appeared because of the reduction of the dislocation density and the annihilation of some low-angle grain boundaries between chains of subgrains lying in layers parallel to the sheet plane. The matrix processes in this temperatures range can be considered forms of continuous recrystallization. The matrix high-angle grain boundaries started to migrate at the temperature range of the peak 2. They moved mostly in the direction normal to the sheet plane. Heating of the sample for an appropriate time at those temperatures resulted in the complete discontinuous recrystallization of the material. The recrystallized microstructure was dominated now by elongated grains, which were a few times thicker than those obtained by annealing at the temperatures of the peak 1.


2007 ◽  
Vol 561-565 ◽  
pp. 869-872 ◽  
Author(s):  
Małgorzata Lewandowska ◽  
Kinga Wawer

Hydrostatic extrusion (HE) as a method of metals forming is known for about 100 years. Recently, it has been utilized as an efficient way of grain size refinement down to nanometer scale. In the case of engineering metals, HE processing alters not only grain size but also second phase particles such as intermetallic inclusions and precipitates. During HE processing, these particles significantly change their size, shape and spatial distribution. These changes are accompanied by improvement in properties of processed metals such as fatigue and fracture toughness. In the present work, changes of second phase particles induced by HE are described in a quantitative way for aluminium alloys. Their impact on mechanical properties is also discussed.


CORROSION ◽  
10.5006/2805 ◽  
2018 ◽  
Vol 74 (11) ◽  
pp. 1229-1236
Author(s):  
Feng Xiao ◽  
Jiangli An ◽  
Hui Chen ◽  
P. Li ◽  
Wei Gao

The corrosion fatigue short crack propagation (CFSCP) behavior of A7N01P-T4 Al alloy welded joints in 3.5 wt% NaCl solution has been investigated. The test results indicate that the CFSCP followed a cyclical type of growth. Microscopic study shows that almost all second-phase particles are distributed along the grain boundary areas. These particles were easily dissolved during the corrosion fatigue test, resulting in weak grain boundaries. Therefore, the fatigue short crack will grow along the winding grain boundaries. While the second-phase particles on the grain boundaries were the main factor to cause the intergranular crack. Transgranular cracking may occur to the coarse grains in the matrix, which indicate that grain size also has a strong influence on the CFSCP behavior of A7N01P-T4 Al alloy.


2007 ◽  
Vol 558-559 ◽  
pp. 1021-1028 ◽  
Author(s):  
Vladimir Yu. Novikov

Grain growth controlled by particles able to move together with grain boundaries is investigated by means of numerical simulation. The particles either located on grain boundaries or randomly distributed over the material volume are shown to retard the growth process. In the first case the growth kinetics is described by a power law Dn −D0 n = kt with the exponent n≤ 3. Growth kinetics under the influence of randomly distributed mobile particles can be approximated by the same law with the exponent n increasing with an increase in the particle volume fraction.


Sign in / Sign up

Export Citation Format

Share Document