Geometric Dynamic Recrystallization in an AA2219 Alloy Deformed to Large Strains at an Elevated Temperature

2004 ◽  
Vol 467-470 ◽  
pp. 1199-1204 ◽  
Author(s):  
Rustam Kaibyshev ◽  
I. Mazurina ◽  
Oleg Sitdikov

The mechanism of new grain evolution during equal channel angular extrusion (ECAE) up to a total strain of ~12 in an Al-Cu-Mn-Zr alloy at a temperature of 475oC (0.75Tm) was examined. It was shown that the new grains with an average size of about 15 µm result from a specific process of geometric dynamic recrystallization (GRX) which can be considered as a type of continuous dynamic recrystallization (CDRX). This process involves three elementary mechanisms. At moderate strains, extensive elongation of initial grains takes place; old grain boundaries become progressively serrated. Upon further ECAE processing, transverse low-angle boundaries (LAB) with misorientation ranging from 5 to 15o are evolved between grain boundary irregularities subdividing the initial elongated grains on crystallites with essentially equiaxed shape. The misorientation of these transverse subboundaries rapidly increases with increasing strain, resulting in the formation of true recrystallized grains outlined by high-angle boundaries from all sides. In the same time, the average misorientation of deformation-induced boundaries remains essentially unchanged during ECAE. It is caused by the fact that the evolution of LABs with misorientation less than 4o occurs continuously during severe plastic deformation. The mechanism maintaining the stability of the transverse subboundaries that is a prerequisite condition for their further transformation into highangle boundaries (HABs) is discussed.

2004 ◽  
Vol 467-470 ◽  
pp. 1151-1156 ◽  
Author(s):  
Cédric Chauvy ◽  
Pierre Barbéris ◽  
Frank Montheillet

Compression tests were used to simulate simple deformation paths within the upper a-range of Zircaloy-4 (i.e. 500°C-750°C). The mechanical behaviour reveals two different domains : at low temperatures and large strain rates, strain hardening takes place before flow softening, whereas this first stage disappears at lower flow stress levels. Strain rate sensitivity and activation energy were determined for both domains. Dynamic recrystallization was investigated using the Electron BackScattering Diffraction (EBSD) technique. It appears that the mechanism involved here is continuous dynamic recrystallization (CDRX), based on the increasing misorientation of subgrain boundaries and their progressive transformation into large angle boundaries. At low strains (e £ 0.3), CDRX kinetics are similar whatever the deformation conditions, while higher temperatures and lower strain rates promote recrystallization at large strains.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 985
Author(s):  
Wenlong Xu ◽  
Jianmin Yu ◽  
Guoqin Wu ◽  
Leichen Jia ◽  
Zhi Gao ◽  
...  

The decreasing temperature reciprocating upsetting-extrusion (RUE) deformation experiment was carried out on Mg-Gd-Y-Zr alloy to study RUE deformation on the influence of microstructure of the alloy. This work showed that with the gradual increase of RUE deformation passes, the continuous dynamic recrystallization (CDRX) process and the discontinuous dynamic recrystallization (DDRX) process occurred at the same time, and the grain refinement effect was obvious. Particulate precipitation induced the generation of DRX through particle-stimulated nucleation (PSN). In addition, after one pass of RUE deformation, the alloy produced a strong basal texture. As the RUE experiment proceeded, the basal texture intensity decreased. The weakening of the texture was due to the combined effect of DRX and alternating loading forces in the axial and radial directions. After four RUE passes, the mechanical properties of the alloy had been significantly improved, which was the result of the combined effect of dislocation strengthening, fine grain strengthening, and second phase strengthening.


2011 ◽  
Vol 409 ◽  
pp. 41-46
Author(s):  
Marat Gazizov ◽  
Rustam Kaibyshev

A novel Al-Cu-Mg-Ag alloy with small additions of zirconium and scandium was subjected to equal channel angular pressing (ECAP) by using route BC at 300°C to strains ranging from ~1 to ~12. Initially, the alloy was subjected to solution treatment followed by water quenching; subsequent overageing was carried out at 380°C for 3 h. It was shown that continuous dynamic recrystallization (CDRX) occurs during ECAP resulting in partially recrystallized structure; at a total strain of ~12, the portion of high-angle boundaries (HAB) attains 50 pct., average misorientation is ~25°. Crystallites having elongated shape and an average size of ~1 μm are evolved after a total strain of ~12.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 572
Author(s):  
Hamed Aghajani Derazkola ◽  
Eduardo García Gil ◽  
Alberto Murillo-Marrodán ◽  
Damien Méresse

The evolution of the microstructure changes during hot deformation of high-chromium content of stainless steels (martensitic stainless steels) is reviewed. The microstructural changes taking place under high-temperature conditions and the associated mechanical behaviors are presented. During the continuous dynamic recrystallization (cDRX), the new grains nucleate and growth in materials with high stacking fault energies (SFE). On the other hand, new ultrafine grains could be produced in stainless steel material irrespective of the SFE employing high deformation and temperatures. The gradual transformation results from the dislocation of sub-boundaries created at low strains into ultrafine grains with high angle boundaries at large strains. There is limited information about flow stress and monitoring microstructure changes during the hot forming of martensitic stainless steels. For this reason, continuous dynamic recrystallization (cDRX) is still not entirely understood for these types of metals. Recent studies of the deformation behavior of martensitic stainless steels under thermomechanical conditions investigated the relationship between the microstructural changes and mechanical properties. In this review, grain formation under thermomechanical conditions and dynamic recrystallization behavior of this type of steel during the deformation phase is discussed.


2020 ◽  
Vol 321 ◽  
pp. 12028
Author(s):  
HOGREFE Katharina ◽  
BUZOLIN Ricardo ◽  
POLETTI María Cecilia

This work uses flow stresses obtained experimentally at different strain rates and temperatures to validate flow modelling results. Flow curves of Ti6Al4V are measured via torsion experiments with a Gleeble® 3800 up to effective strains of 8. A physically based model that describes the evolutions of microstructure and the flow stress in the β-phase field was developed. A model of continuous dynamic recrystallization (CDRX) based on the work of Gourdet and Montheillet [1] for aluminium alloys is combined in this work with elements taken from Kocks and Mecking [2]. The model consists of a detailed description of the microstructure, based on different dislocation density populations and grain boundaries. All these internal variables evolve according to a production and a recovery term correlated mathematically with the temperature and the strain rate. The modelled output variables besides the flow stress are the total, the interior and the wall dislocation densities as well as the subgrain and grain sizes developed by continuous dynamic recrystallization. The model describes the softening occurring during large strain deformations, which is partly produced by the formation of new high angle grain boundaries (HAGB). The fraction of HAGB was used to determine the recrystallization grade, validated with microstructural characterization.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1443 ◽  
Author(s):  
Lei Liu ◽  
Yunxin Wu ◽  
Hai Gong ◽  
Shuang Li ◽  
A. S. Ahmad

The isothermal compression tests of the 2219 Al alloy were conducted at the temperature and the strain rate ranges of 623–773 K and 0.01–10 s−1, respectively, and the deformed microstructures were observed. The flow curves of the 2219 Al alloy obtained show that flow stress decreases with the increase in temperature and/or the decrease in strain rate. The physically based constitutive model is applied to describe the flow behavior during hot deformation. In this model, Young’s modulus and lattice diffusion coefficient are temperature-dependent, and the creep exponent is regarded as a variable. The predicted values calculated by the constitutive model are in good agreement with the experimental results. In addition, it is confirmed that the main softening mechanism of the 2219 Al alloy during hot deformation is dynamic recovery and incomplete continuous dynamic recrystallization (CDRX) by the analysis of electron backscattered diffraction (EBSD) micrographs. Moreover, CDRX can readily occur under the condition of high temperatures, low strain rates, and large strains. Meanwhile, the recrystallization grain size will also be larger.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2773 ◽  
Author(s):  
Ping Xu ◽  
Jianmin Yu ◽  
Zhimin Zhang

Mg–13Gd–4Y–2Zn–0.5Zr alloy was subjected to compression–torsion deformation at 450 °C with a strain rate of 0.001–0.5 s−1 using a Gleeble 3500 torsion unit. The effects of compression–torsion deformation on the microstructure and texture were studied, and the results showed that with the decrease of strain rate, the texture strength decreased, the number of dynamic precipitated particles increased, the degree of recrystallization increased, and the dynamic recrystallization mechanism changed from a continuous dynamic recrystallization mechanism to a continuous and discontinuous dynamic recrystallization mechanism. Along the direction of increasing radius, the degree of dynamic recrystallized grain (DRX) increased, the number of dynamic precipitated particles increased, and the texture strength slightly increased.


2021 ◽  
Vol 1016 ◽  
pp. 869-874
Author(s):  
Nadjoua Matougui ◽  
Mohamed Lamine Fares ◽  
David Piot

This present work examines the influence of niobium in solid solution on the microstructural evolution of pure nickel at various deformation conditions. On this purpose, high-purity nickel and six model nickel-niobium alloys (Ni–0.01, 0.1, 1, 2, 5 and 10 wt. % Nb) were subjected to hot torsion test to large strains within the temperature range from 800 to 1000 °C at strain rates of 0.03, 0.1 and 0.3 s–1. Microstructural analyses were carried out using both optical and scanning electron microscopy-based electron back-scattered diffraction technique. The overall results showed the key role played by the Nb amount when coupled with various DRX mechanisms involved, i.e. DDRX, CDRX, and GDRX with respect to the prescribed deformation conditions, in reducing grain size and retarding DRX kinetics from which the microstructures of the examined materials such as Ni 2 and 10 wt. % Nb were seen evolving in different ways. In all these deformed materials, a transition from discontinuous dynamic recrystallization to continuous dynamic recrystallization was observed at low temperature and high strain rate whereas only discontinuous dynamic recrystallization occurred at high temperature.


Sign in / Sign up

Export Citation Format

Share Document