scholarly journals Effect of Decreasing Temperature Reciprocating Upsetting-Extrusion on Microstructure and Mechanical Properties of Mg-Gd-Y-Zr Alloy

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 985
Author(s):  
Wenlong Xu ◽  
Jianmin Yu ◽  
Guoqin Wu ◽  
Leichen Jia ◽  
Zhi Gao ◽  
...  

The decreasing temperature reciprocating upsetting-extrusion (RUE) deformation experiment was carried out on Mg-Gd-Y-Zr alloy to study RUE deformation on the influence of microstructure of the alloy. This work showed that with the gradual increase of RUE deformation passes, the continuous dynamic recrystallization (CDRX) process and the discontinuous dynamic recrystallization (DDRX) process occurred at the same time, and the grain refinement effect was obvious. Particulate precipitation induced the generation of DRX through particle-stimulated nucleation (PSN). In addition, after one pass of RUE deformation, the alloy produced a strong basal texture. As the RUE experiment proceeded, the basal texture intensity decreased. The weakening of the texture was due to the combined effect of DRX and alternating loading forces in the axial and radial directions. After four RUE passes, the mechanical properties of the alloy had been significantly improved, which was the result of the combined effect of dislocation strengthening, fine grain strengthening, and second phase strengthening.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Xue ◽  
Shuaishuai Chen ◽  
Haijun Liu ◽  
Zhimin Zhang ◽  
Luying Ren ◽  
...  

The microstructure, deformation mechanisms, dynamic recrystallization (DRX) behavior, and texture evolution of AZ80 magnesium alloy were investigated by three-pass cyclic expansion-extrusion (CEE) tests. Optical microscopy (OM), electron back-scattered diffraction (EBSD), and X-ray diffraction (XRD) were employed to study microstructure, grain orientation, DRX mechanism, and texture evolution. The results show that the grain sizes decrease continuously with the increase of CEE pass. The grain refinement effect of the first pass is the most remarkable, and there appear a large number of twins. After three-pass CEE, a well-distributed structure with fine equiaxed grains is obtained. With the increase of CEE pass, the deformation mechanism changes from twinning to slipping and the DRX mechanism changes mainly from twinning-induced dynamic recrystallization (TDRX) to rotation dynamic recrystallization (RDRX) and then to continuous dynamic recrystallization (CDRX). The grain misorientation between the new grains and matrix grains deceases gradually, and a relatively small angle misorientation is obtained after three-pass CEE. Grain misorientations of the first two passes are attributed to TDRX and RDRX behaviors, respectively. The grain refinement changes the deformation and DRX mechanisms of CEE process, which leads the (0002) basal texture intensity first decrease and then increase suddenly. Eventually, the extremely strong basal texture is formed after three-pass CEE.


2004 ◽  
Vol 467-470 ◽  
pp. 1199-1204 ◽  
Author(s):  
Rustam Kaibyshev ◽  
I. Mazurina ◽  
Oleg Sitdikov

The mechanism of new grain evolution during equal channel angular extrusion (ECAE) up to a total strain of ~12 in an Al-Cu-Mn-Zr alloy at a temperature of 475oC (0.75Tm) was examined. It was shown that the new grains with an average size of about 15 µm result from a specific process of geometric dynamic recrystallization (GRX) which can be considered as a type of continuous dynamic recrystallization (CDRX). This process involves three elementary mechanisms. At moderate strains, extensive elongation of initial grains takes place; old grain boundaries become progressively serrated. Upon further ECAE processing, transverse low-angle boundaries (LAB) with misorientation ranging from 5 to 15o are evolved between grain boundary irregularities subdividing the initial elongated grains on crystallites with essentially equiaxed shape. The misorientation of these transverse subboundaries rapidly increases with increasing strain, resulting in the formation of true recrystallized grains outlined by high-angle boundaries from all sides. In the same time, the average misorientation of deformation-induced boundaries remains essentially unchanged during ECAE. It is caused by the fact that the evolution of LABs with misorientation less than 4o occurs continuously during severe plastic deformation. The mechanism maintaining the stability of the transverse subboundaries that is a prerequisite condition for their further transformation into highangle boundaries (HABs) is discussed.


2013 ◽  
Vol 753 ◽  
pp. 411-416 ◽  
Author(s):  
Andrey Belyakov ◽  
Marina Tikhonova ◽  
Zhanna Yanushkevich ◽  
Rustam Kaibyshev

The structural changes that are related to the new fine grain development in a chromium-nickel austenitic stainless steel subjected to warm working by means of multiple forging and multiple rolling were studied. The multiple warm working to a total strain of 2 at temperatures of 500-900C resulted in the development of submicrocrystalline structures with mean grain sizes of 300-850 nm, depending on processing conditions. The new fine grains resulted mainly from a kind of continuous reactions, which can be referred to as continuous dynamic recrystallization. Namely, the new grains resulted from a progressive evolution of strain-induced grain boundaries, the number and misorientation of which gradually increased during deformation. In contrast to hot working accompanied by discontinuous dynamic recrystallization, when the dynamic grain size can be expressed by a power law function of temperature compensated strain rate as D ~ Z-0.4, much weaker temperature/strain rate dependence of D ~ Z-0.1was obtained for the warm working.


2010 ◽  
Vol 667-669 ◽  
pp. 949-954 ◽  
Author(s):  
Anna Mogucheva ◽  
Rustam Kaibyshev

An Al-4.57%Mg–0.2%Sc was subjected to equal channel angular pressing up to fixed true strains of 1, 2, 4, 8 and 12 at a temperature of 300oC. It was shown that extensive grain refinement occurs in this alloy through continuous dynamic recrystallization. As a result, ECAP can provide the formation of subgrain structure, partially recrystallized structure and fully recrystallized structure. The type of structure evolved is dependent on strain imposed. At ε2, the formation of three-dimensional arrays of low-angle boundaries takes place. Next, in the strain interval from 4 to 8 these low-angle boundaries gradually convert into high-angle boundaries. At ε12, fully recrystallized structure is evolved. Yield stress and ultimate strength gradually increases with increasing strain. Mechanisms of strengthening are discussed.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2773 ◽  
Author(s):  
Ping Xu ◽  
Jianmin Yu ◽  
Zhimin Zhang

Mg–13Gd–4Y–2Zn–0.5Zr alloy was subjected to compression–torsion deformation at 450 °C with a strain rate of 0.001–0.5 s−1 using a Gleeble 3500 torsion unit. The effects of compression–torsion deformation on the microstructure and texture were studied, and the results showed that with the decrease of strain rate, the texture strength decreased, the number of dynamic precipitated particles increased, the degree of recrystallization increased, and the dynamic recrystallization mechanism changed from a continuous dynamic recrystallization mechanism to a continuous and discontinuous dynamic recrystallization mechanism. Along the direction of increasing radius, the degree of dynamic recrystallized grain (DRX) increased, the number of dynamic precipitated particles increased, and the texture strength slightly increased.


2018 ◽  
Vol 941 ◽  
pp. 982-987
Author(s):  
Anna Morozova ◽  
Yana Olkhovikova ◽  
Evgeniy Tkachev ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The microstructure evolution and mechanical properties of a copper alloy subjected to deformation at temperatures of 20 °C and 400 °C to total strains from 1 to 4 were examined. The formation of planar low-angle boundaries with moderate misorientations occurs within initial grains at relatively small strains regardless of deformation temperature. Upon further processing the misorientations of these boundaries progressively increase and the new ultrafine grains develop. Continuous dynamic recrystallization takes place during deformation at ambient and elevated temperatures. The kinetics of dynamic recrystallization is discussed in terms of a modified Johnson-Mehl-Avrami-Kolmogorov relationship. The large plastic straining results in significant strengthening, the ultimate tensile strength increases from 190 MPa in the initial state to 440 MPa and to 400 MPa after total strain of 4 at 20 °C and 400 °C, respectively. A modified Hall-Petch relationship is applied to evaluate the contribution of grain refinement and dislocation density to the overall strengthening.


2021 ◽  
Vol 1035 ◽  
pp. 10-16
Author(s):  
Ying Ze Meng ◽  
Jian Min Yu ◽  
Hui Sheng Yu ◽  
Yao Jin Wu ◽  
Zhi Min Zhang

The multi-directional forging process can achieve large plastic deformation, and has great application prospects in industrial production. The Mg-9.55Gd-3.28Y-1.77Zn-0.34Zr (wt%) alloy containing LPSO phase was deformed in different passes and then quenched immediately by the multi-directional forging process with decreasing temperature, and the microstructure and mechanical properties of the alloy were analyzed. It is found that as the number of deformation passes increases, the coarse grains decrease, and the dynamic recrystallization fraction increases. The dynamic recrystallization grains swallow the original grains, promote the continuous refinement of the grains, and greatly improve the uniformity of the microstructure. At the same time, the maximum texture intensity of the (0001) basal plane is significantly reduced, and the pole figure distribution is more dispersed, which is attributed to the random orientation of dynamic recrystallization. Due to the refinement of the microstructure and the weakening of the texture, the tensile strength and yield strength at room temperature increase significantly. After 3 passes of deformation, the alloy has the highest mechanical properties, with tensile strength, yield strength, and elongation reaching 317 MPa, 233 MPa, and 15%, respectively.


2021 ◽  
Author(s):  
Marta Kuczynska ◽  
Ulrich Becker ◽  
Youssef Maniar ◽  
Steffen Weihe

Abstract The reoccurring cyclic load imposed onto soldered electronic components during their operation time leads to accumulation of inelastic strains in the structure. On a microscale level, the degree of plastic deformation is determined by the formation and annihilation of dislocations, leading to continuous refinement by creation of new grain boundaries, precipitates relocation and growth. This microstructure rearrangement, triggered by an increasing amount of inelastic deformation, is defined as dynamic recrystallization. This work presents a macroscale modelling approach for the description of continuous dynamic recrystallization observed in Sn-based solder connections. The model used in this work describes kinetics of macroscopic gradual evolution of equivalent grain size, where the initial grain size is continuously refined with increasing accumulated inelastic strain until a saturation grain size is reached. The rate and distribution of dynamic recrystallization is further numerically modelled dependent on the effective accumulated inelastic strain and governing stress multiaxiality. A parameter study of the presented model and its employment in finite element (FE) simulation is further described. Finally, FE simulation of the grain size evolution is demonstrated on an example of a bulky sample under isothermal cyclic mechanical loading, as well as a BGA-like structure under tensile, shear and mixed mode cyclic load.


2020 ◽  
Vol 822 ◽  
pp. 153282 ◽  
Author(s):  
David Canelo-Yubero ◽  
Zsolt Kovács ◽  
J.F. Thierry Simonet Fotso ◽  
Domonkos Tolnai ◽  
Norbert Schell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document