Microstructures of Spray Formed Superalloy GH742

2005 ◽  
Vol 475-479 ◽  
pp. 2845-2848 ◽  
Author(s):  
Zhou Li ◽  
Guo Qing Zhang ◽  
Shi Fan Tian ◽  
Ming Gao Yan

Microstructures and hot deformation behaviors of spray formed superalloy GH742 have been studied in this paper. The results indicate that the spray formed superalloy GH742 has high relative density, low oxygen pickup, refined microstructure, and good forgeability. The fully inhibited coarsening of microstructure in spray formed superalloy GH742 has also been found in this study. 32wt% γ¢ and 0.5wt% carbonitrides, (Nb,Ti)(C,N) and Ti(C,N) were found in the as-deposited GH742, and most of them are sub-micrometer.

2020 ◽  
Vol 39 (1) ◽  
pp. 457-465
Author(s):  
Jiangpeng Yan ◽  
Zhimin Zhang ◽  
Jian Xu ◽  
Yaojin Wu ◽  
Xi Zhao ◽  
...  

AbstractThe cylindrical samples of TC4 titanium alloy prepared by spark plasma sintering (SPS) were compressed with hot deformation of 70% on the thermosimulation machine of Gleeble-1500. The temperature of the processes ranged from 850°C to 1,050°C, and the strain rates varied between 0.001 and 5 s−1. The relative density of the sintered and compressed samples was measured by the Archimedes principle. During hot deformation, the microstructure of the sample was observed. The results show that the average relative density of the samples was 90.2% after SPS. And the relative density was about 98% after the hot deformation of 70%. Under high temperature (>950°C), the sensitivity of flow stress to temperature was reduced. At low strain rate (0.001 s−1), the increase in the deformation temperature promoted the growth of dynamic recrystallization (DRX). At the same temperature, the increase in strain rate slowed down the growth of DRX grains. And the variation tendency was shown from the basket-weave structure to the Widmanstätten structure at a low strain rate (<0.1 s−1), with increase in the strain rate.


2008 ◽  
Vol 575-578 ◽  
pp. 164-168 ◽  
Author(s):  
Xin Zhao

The hot deformation behaviors of a ferritic spheroidal cast iron (FSCI) have been investigated by compression testing on a Gleeble 3500 machine of the DSI-YSU Joint Laboratory. The temperature rang was from 1073K to 1273K and strain rate from 10-3 to 1 s-1. The total true stain was 0.7. The result shows that the flow curves obtained are typical of dynamic recrystallization processes. The plots of either the natural logarithms of the corresponding temperature or the natural logarithms of strain rate against the hyperbolic of flow stresses satisfy straight line relationships over the experimental data, indicating that the hot compression of the FSCI is thermally activated. The material constants, including activation energy 0H as 240.8 kJ/mol, stress-level coefficient α as 1.352×10-8 Pa-1, stress exponential n as 3.9937, structural factor A as 5.64×108 s-1, are derived .


2016 ◽  
Vol 273 (12) ◽  
pp. 4515-4524 ◽  
Author(s):  
Miia Seppälä ◽  
Konsta Pohjola ◽  
Jussi Laranne ◽  
Markus Rautiainen ◽  
Heini Huhtala ◽  
...  

2014 ◽  
Vol 56 (4) ◽  
pp. 380-384 ◽  
Author(s):  
A. I. Orlova ◽  
N. V. Malanina ◽  
V. N. Chuvil’deev ◽  
M. S. Boldin ◽  
N. V. Sakharov ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 119 ◽  
Author(s):  
Houyi Li ◽  
Lingling Fan ◽  
Mingyang Zhou ◽  
Youlong Zhou ◽  
Kuan Jiang ◽  
...  

The hot deformation test of the nano silicon carbide (nano-SiC) and carbon nano tubes (CNT) hybrid-reinforced AZ80 matrix composite was performed at compression temperatures of 300–450 °C and strain rates of 0.0001–1 s−1. It could be observed that the flow stress of the nanocomposite rose with the reduction of deformation temperature and the increase of strain rate. The hot deformation behaviors of the composite could be described by the sine-hyperbolic Arrhenius equation, and deformation activation energy (Q) was calculated to be 157.8 kJ/mol. The Q values of the extruded nanohybrid/AZ80 composite in this study and other similar studies on extruded AZ80 alloys were compared in order to analyze the effect of the addition of reinforcement, and the effects of deformation conditions on activation energy were analyzed. Finally, the compression microstructure in an unstable condition was carefully analyzed, and results indicated that the phenomenon of local instability was easy to occur at the compression specimen of the nanohybrid/AZ80 composite under deformation conditions of low temperature with high strain rate (300 °C, 0.1–0.01 s−1), and high temperature with low strain rate (450 °C, 0.0001 s−1).


2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


2020 ◽  
Vol 30 (4) ◽  
pp. 526-532
Author(s):  
Bangqi Yin ◽  
Xiangyi Xue ◽  
Bin Tang ◽  
Yi Wang ◽  
Hongchao Kou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document