Design of Functionally Graded Structures Using Topology Optimization

2005 ◽  
Vol 492-493 ◽  
pp. 435-440 ◽  
Author(s):  
Glaucio H. Paulino ◽  
Emílio Carlos Nelli Silva

The concept of functionally graded materials (FGMs) is closely related to the concept of topology optimization, which consists in a design method that seeks a continuum optimum material distribution in a design domain. Thus, in this work, topology optimization is applied to design FGM structures considering a minimum compliance criterion. The present approach applies the so-called “continuous topology optimization” formulation where a continuous change of material properties is considered inside the design domain by using the graded finite element concept. A new design is obtained where distribution of the graded material itself is considered in the design domain, and the material properties change in a certain direction according to a specified variation, leading to a structure with asymmetric stiffness properties.

Author(s):  
Cynthia M. Chan ◽  
Andrew Ruys

Functionally graded materials (FGMs) are composite materials in which the properties are varied continuously from one face to the other via a compositional gradient. Functionally graded structures can be found in nature as evident in the cross-sections of bone, teeth and many plant stems, for example bamboo. Initially conceived for the purpose of thermal barrier coatings on spaceplanes, FGMs are finding more applications in other fields such as in polymers, biomedical and semiconductors. In this review, we take a look at two kinds of ceramics, carbon-carbon and fused silica, their properties and processing methods, as well as the possibility of incorporating them in a functionally graded material for use in high-temperature applications. Both carbon and fused silica have similarly low thermal expansion coefficients which will (1) allow the degree of thermal mismatch between the graded layers to be minimized and; (2) reduce the thermomechanical shock that will occur in the presence of a steep temperature gradient.


2011 ◽  
Vol 675-677 ◽  
pp. 575-578 ◽  
Author(s):  
Qian Cong ◽  
Fu Min Xu ◽  
Jia Yan Li ◽  
Yi Tan ◽  
Xiao Lei Shi ◽  
...  

Five-layered Al/Al-Cu functionally graded material (FGM) was fabricated by powder metallurgy technology. The microstructure and composition of the prepared specimen were studied. Vickers hardness, flexural strength and fracture surface morphology were also measured. The results showed that Al/Al-Cu graded material with dense structure and compositional continuous change was obtained by solution-precipitation method. The graded materials presented a compositional continuous change along the graded direction because of the diffusion effect, and the Vickers hardness was liner proportional to the distribution of Cu content. Compared with pure sintered Al, remarkable improvement on hardness and fracture strength was achieved due to the CuAl2 phase dispersively distributed in the matrix. With the increase of Cu content, the fracture mode changed from tough fracture to the tendency of brittle fracture.


2016 ◽  
Vol 857 ◽  
pp. 249-254
Author(s):  
Aswathy Komalan ◽  
Dhanya Krishnan

Functionally graded materials (FGMs) have mechanical properties that vary continuously from one phase to another within a confined volume. In general, these materials exhibit certain amount of scatter in their properties due to different factors. The dispersion in the response values of a structure is due to the scatter in the values of material properties and applied external load. For design purposes, it is essential to know the potential variations in the structural response due to the system material or external randomness. In the present work, free vibration and static analysis on FGM structures with material randomness are considered.


2003 ◽  
Vol 70 (3) ◽  
pp. 359-363 ◽  
Author(s):  
S. Mukherjee ◽  
Glaucio H. Paulino

Paulino and Jin [Paulino, G. H., and Jin, Z.-H., 2001, “Correspondence Principle in Viscoelastic Functionally Graded Materials,” ASME J. Appl. Mech., 68, pp. 129–132], have recently shown that the viscoelastic correspondence principle remains valid for a linearly isotropic viscoelastic functionally graded material with separable relaxation (or creep) functions in space and time. This paper revisits this issue by addressing some subtle points regarding this result and examines the reasons behind the success or failure of the correspondence principle for viscoelastic functionally graded materials. For the inseparable class of nonhomogeneous materials, the correspondence principle fails because of an inconsistency between the replacements of the moduli and of their derivatives. A simple but informative one-dimensional example, involving an exponentially graded material, is used to further clarify these reasons.


2018 ◽  
Vol 9 ◽  
pp. 2443-2456
Author(s):  
Roberto Guarino ◽  
Gianluca Costagliola ◽  
Federico Bosia ◽  
Nicola Maria Pugno

In many biological structures, optimized mechanical properties are obtained through complex structural organization involving multiple constituents, functional grading and hierarchical organization. In the case of biological surfaces, the possibility to modify the frictional and adhesive behaviour can also be achieved by exploiting a grading of the material properties. In this paper, we investigate this possibility by considering the frictional sliding of elastic surfaces in the presence of a spatial variation of the Young’s modulus and the local friction coefficients. Using finite-element simulations and a two-dimensional spring-block model, we investigate how graded material properties affect the macroscopic frictional behaviour, in particular, static friction values and the transition from static to dynamic friction. The results suggest that the graded material properties can be exploited to reduce static friction with respect to the corresponding non-graded material and to tune it to desired values, opening possibilities for the design of bio-inspired surfaces with tailor-made tribological properties.


2008 ◽  
Vol 587-588 ◽  
pp. 400-404
Author(s):  
P. Pinto ◽  
L. Mazare ◽  
Delfim Soares ◽  
F.S. Silva

The Incremental Melting and Solidification Process (IMSP) is a relatively new field for material processing for the production of functionally graded materials. In this process a controlled liquid bath is maintained at the top of the component where new materials are added changing the components composition. Thus, a functionally graded material is obtained with a varying composition along one direction of the component. This paper deals with the influence of one of the process parameters, namely displacement rates between heating coil and mould, in order to evaluate its influence on both metallurgical and mechanical properties of different Al-Si alloys. Hardness and phase distribution, along the main castings axis, were measured. To better assess and characterize the process, two different Al-Si alloys with and without variation of chemical composition along the specimen were analysed. Results demonstrate that a gradual variation of metallurgical and mechanical properties along the component is obtained. It is also shown that Al-Si functionally graded materials can be produced by the incremental melting and solidification process. Results show that the displacement rate is very important on metallurgical and mechanical properties of the obtained alloy.


Author(s):  
С. И. Жаворонок ◽  

A brief review of the modern state-of-the art and tendencies of further development of various methods of solution of wave dispersion problems in heterogeneous functionally graded elastic waveguides is presented. Main types of functionally graded materials and structures, including gradient thon-walled structures, and their main engineering applications is discussed. The main difficulties of modelling of the stress-strain state of functionally graded shells and plates are pointed, as well as the possible ways to overcome such difficulties. The main theoretical bases of definition of effective constitutive constants of functionally graded materials and their possible estimates used in the practice are considered. Main dependencies of the effective constitutive constants of a functionally graded material on coordinates used for the mathematical modelling of the dynamics are also shown. The statement of the dynamics problem for a functionally graded waveguide and the appropriate statement of the normal wave dispersion problem are pointed. The presented Part I of the review consider some analytical methods of solution of dispersion problems, mainly the matrix ones based on the formulation of the steady dynamics problem in the image space as a first-order ordinary differential equations system. The state vectors corresponding to the useful Cauchy and Stroh formalisms are introduced, and the appropriate governing equations and the boundary conditions on waveguide’s faces are presented. Classical methods for solving the steady dynamics problem for a laminated waveguide are briefly described, which could be a basis for the further approximation of a functionally graded material by a system of layers with constant properties, i.e. the transfer matrix method, its main modifications developed to ensure the stability of calculations, and the global matrix method. Then, the intensively developed last 15 years reverberation matrix method, stiffness matrix method, and the Peano series method are discussed. Some key solutions of the wave dispersion problems for heterogeneous layers are presented; such solutions improve the efficiency of approximation of a functionally graded structure by a laminated one. The implicit solution of the general problem of steady dynamics for a waveguide with arbitrary gradation law is shown. The key features of the discussed matrix methods are pointed briefly as well as their main drawbacks. In the Part II, the main attention will be paid to methods of semi-analytical solution of dispersion problems based on the approximation of a waveguide by an equivalent system with a finite number of degrees of freedom: power series, generalized Fourier series, semi-analytical finite elements. spectral elements, as well as methods based on various theories of plates and shells.


2021 ◽  
Vol 118 (5) ◽  
pp. 502
Author(s):  
Jiarong Zhang ◽  
Xinjie Di ◽  
Chengning Li ◽  
Xipeng Zhao ◽  
Lingzhi Ba ◽  
...  

Functional graded materials (FGMs) have been widely applied in many engineering fields, and are very potential to be the substitutions of dissimilar metal welding joints due to their overall performance. In this work, the Inconel625-high-strength low-alloy (HSLA) Steel FGM was fabricated by wire arc additive manufacturing (WAAM). The chemical composition distribution, microstructure, phase evolution and mechanical properties of the FGM were examined. With the increasing of HSLA Steel, the chemical composition appeared graded distribution, and the primary dendrite spacing was largest in graded region with 20%HSLA Steel and then gradually decreased. And the main microstructure of the FGM transformed from columnar dendrites to equiaxed dendrites. Laves phase precipitated along dendrites boundary when the content of HSLA Steel was lower than 70% and Nb-rich carbides precipitated when the content of HSLA Steel exceeded to 70%. Microhardness and tensile strength gradually decreased with ascending content of HSLA Steel, and had a drastic improvement (159HV to 228HV and 355Mpa to 733Mpa) when proportion of HSLA Steel increased from 70% to 80%.


Sign in / Sign up

Export Citation Format

Share Document