Dynamic Analysis of Rigid-Body Mechanisms Mounted on Flexible Support Structures — Planar Case

2006 ◽  
Vol 505-507 ◽  
pp. 589-594 ◽  
Author(s):  
Huai Ku Sun ◽  
Cun Gin Chen ◽  
Yu Chen Shen

Computer-aided analysis of rigid-body mechanisms is combined with the finite element analysis of flexible structures to develop a computer model and derive the equation of motion, incorporating the Lagrange multiplier, to be used in the dynamic analysis of multi-rigid-body mechanisms mounted on flexible support structures. The resulting equations are solved by numerical integration. Predicting and analyzing the performance of the full system, including the motion of the system components and the forcing condition, during the engineering design process will promote the success of the entire system. Finally, a machine gun system with a flexible mount is given as a numerical example. The results reveal that the interaction between the rigid-body mechanisms and its flexible support structures importantly determines the performance of whole system. This study considers only the planar case. Our future work will propose a more complicated fully three-dimensional model.

2014 ◽  
Vol 986-987 ◽  
pp. 681-684
Author(s):  
Shi Long Wang ◽  
Qi Xiang Lin ◽  
Ying Qian

This paper is a further analysis of the strain tower on 1YD - JC4.After making a static analysis of 1YD - JC4 strain tower,we select the best offset point and make a dynamic analysis of it.Based on the finite element analysis software SAP2000, we set up a three-dimensional model of 1YD - JC4 strain tower of 110kv about heavy icing area,and then obtain the first six modal frequencies after making a dynamic analysis . We then draw the response spectrum curve.in the end, we select the safe and economic value of damping according to the curve.


Author(s):  
Y Guo ◽  
J P Hu ◽  
L Y Zhang

This article treats the pile driving as multi-body dynamic contacts. By using the penalty function method and three-dimensional model of finite-element method, the dynamic process of pile driving is acquired and a method for choosing the cushion material of the hydraulic pile hammer to improve driving efficiency is proposed. The process of pile driving in the real situation of an industrial experiment is simulated. The results of stress on test point are consistent with the test point. By analysing the stress distributed along the direction of pile radius and pile axis, the rule of the stress distribution on the pile is concluded. The rule for cushion material choice is obtained by comparing the influence for the impact stress with different elastic modulus ratio of the hammer cushion to the pile and the pile cushion to the pile.


2010 ◽  
Vol 129-131 ◽  
pp. 256-260
Author(s):  
Yi Shu Hao ◽  
Chuang Hai ◽  
Xin Xing Zhu

Treating high speed milling theory as the guidance, this paper researched high speed milling process of bracket part based on UG NX. Combined with the structural features of bracket part, three dimensional model is built by UG NX CAD and machining processes are worked out after analysis. UG CAM module was applied to fabricate tool paths. At last, finite element analysis method is introduced to study the processing deformation by UG NX NASTRAN module, based on which measures to restrain processing deformations is advanced and processing sequences are optimized.


2012 ◽  
Vol 201-202 ◽  
pp. 741-744 ◽  
Author(s):  
Zhen Ning Hou ◽  
Jun Wu ◽  
Qing Wang ◽  
Hong Gen Tian ◽  
Nan Chao ◽  
...  

A finite element approach based on Ansys is developed to simulate stress intensity distribution in a three dimensional model of coupling clamp joint, which includes ferrules, pipe caps and bolts. The characteristics of stress intensity distributions of coupling clamp joint under strength pressure loading have been studied by means of the non-linear finite element method. The FE model can also predict the clamp quality and tolerances to be expected under different process conditions and define the most effective process parameters to influence the tolerances. The study could give us a better understanding on the mechanism and basis for optimization design of the coupling clamp joint.


2011 ◽  
Vol 368-373 ◽  
pp. 3052-3056
Author(s):  
Wei Jun Yang ◽  
Yong Da Yang

New full hall scaffolds with pulley-clip style formwork support system is adopted in the concert hall of Changsha. This paper presents the concept of the complete equivalent initial imperfection according to the characteristics of too many influential factors on the high formwork supporting frame,then makes the complete equivalent initial imperfectione equivalent to assumed equivalent horizontal load in order to ensure the safety of the frame. At the same time, it gets a three-dimensional model by the general finite element software ANSYS 10.0. Based on the results of experiment and finite element analysis, it gets the recommended value of assumed equivalent horizontal load. The study on the high formwork supporting frame with pulley-clip style provides some reference for other similar projects.


2019 ◽  
Vol 1372 ◽  
pp. 012014 ◽  
Author(s):  
Aishah Umairah Abd Aziz ◽  
Hong Seng Gan ◽  
Ahmad Kafrawi Nasution ◽  
Mohammed Rafiq Abdul Kadir ◽  
Muhammad Hanif Ramlee

2014 ◽  
Vol 1055 ◽  
pp. 229-233
Author(s):  
Jun Ling ◽  
Shao Ping Zhou ◽  
Feng Qi Wu

In present society, port container transportation is a basic need for the costal country. The quayside container crane plays a vital role in port transportation field. Taking 80t quayside container crane as the subject, the three-dimensional model of crane steel structure with plates was established;the element analysis by means of Workbench and multi-measuring points stress test of quayside container crane steel structure was carried out. The simulationresults werecompared with test results to prove the correctness of the model. On the basis, the strength, rigidity and fatigue property of the crane was analyzed. Finally, some design and manufacture suggestions about craneswere given.


2013 ◽  
Vol 431 ◽  
pp. 253-257
Author(s):  
Qing Zhong He ◽  
Pu Quan Wang ◽  
Peng Duan ◽  
Shuai Guo ◽  
Ming Zhang ◽  
...  

This paper tries using Inventor software to create the three-dimensional model of the the palletizing robots operation rear arm, and then importing this model to ABAQUS to proceed finite element analysis of statics. We verified these two softwares interface issues, the correctness of the calculation method and the steps by analyzing. From analyzing we found the security issues in the operation rear arm. Then we checked and optimized the model for the issues. From the result, the optimized model meets the strength design requirements. The study has reference value for engineering and technical people.


2014 ◽  
Vol 1055 ◽  
pp. 218-223
Author(s):  
Jin Yu ◽  
Xiu Feng Zhu ◽  
Yan Liang Gao

This paper indicates a kind of research on the optimization of clamping scheme for the joint thin-walled parts in milling process .The three-dimensional model of four-flute end mill and the part are made by UG. The effect of different clamping scheme on the deformation of joint structure is simulated by the finite element analysis software ABAQUS. With the purpose of getting the minimum of the average deformation, MATLAB genetic algorithm optimizes the clamping scheme and acquires the best clamping scheme. The simulation and optimization provide an effective method for controlling the deformation due to different clamping scheme of aeronautic joint-shaped workpiece.


Sign in / Sign up

Export Citation Format

Share Document