Thermodynamic Properties of CMSX-4 Superalloy: Results from the ThermoLab Project

2006 ◽  
Vol 508 ◽  
pp. 591-596 ◽  
Author(s):  
Mauro Palumbo ◽  
Daniele Baldissin ◽  
Livio Battezzati ◽  
O. Tassa ◽  
Rainer Wunderlich ◽  
...  

This contribution reports the results of calorimetric measurements of the enthalpy of fusion and liquid specific heat carried out in different laboratories as part of the ground campaign of the Thermolab project. Different equipments and calibration methods have been used and critically evaluated. Thermodynamic calculations using the Thermocalc software have been performed and a comparison has been carried out with the experimental results.

2008 ◽  
Vol 73 (4) ◽  
pp. 499-506 ◽  
Author(s):  
Ana Kostov ◽  
Dragana Zivkovic

Thermodynamic calculations in the ternary Ti-Al-Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti-Al-Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.


2019 ◽  
Vol 15 ◽  
Author(s):  
Andaç Batur Çolak ◽  
Oğuzhan Yıldız ◽  
Mustafa Bayrak ◽  
Ali Celen ◽  
Ahmet Selim Dalkılıç ◽  
...  

Background: Researchers working in the field of nanofluid have done many studies on the thermophysical properties of nanofluids. Among these studies, the number of studies on specific heat are rather limited. In the study of the heat transfer performance of nanofluids, it is necessary to increase the number of specific heat studies, whose subject is one of the important thermophysical properties. Objective: The authors aimed to measure the specific heat values of Al2O3/water, Cu/water nanofluids and Al2O3-Cu/water hybrid nanofluids using the DTA method, and compare the results with those frequently used in the literature. In addition, this study focuses on the effect of temperature and volume concentration on specific heat. Method: The two-step method was used in the preparation of nanofluids. The pure water selected as the base fluid was mixed with the Al2O3 and Cu nanoparticles and Arabic Gum as the surfactant, firstly mixed in the magnetic stirrer for half an hour. It was then homogenized for 6 hours in the ultrasonic homogenizer. Results: After the experiments, the specific heat of nanofluids and hybrid nanofluid were compared and the temperature and volume concentration of specific heat were investigated. Then, the experimental results obtained for all three fluids were compared with the two frequently used correlations in the literature. Conclusion: Specific heat capacity increased with increasing temperature, and decreased with increasing volume concentration for three tested nanofluids. Cu/water has the lowest specific heat capacity among all tested fluids. Experimental specific heat capacity measurement results are compared by using the models developed by Pak and Cho and Xuan and Roetzel. According to experimental results, these correlations can predict experimental results within the range of ±1%.


1964 ◽  
Vol 86 (3) ◽  
pp. 320-326 ◽  
Author(s):  
E. S. Nowak

A parametric equation of state was derived for water and water vapor in the critical region from experimental P-V-T data. It is valid in that part of the critical region encompassed by pressures from 3000 to 4000 psia, specific volumes from 0.0400 to 0.1100 ft3/lb, and temperatures from 698 to 752 deg F. The equation of state satisfies all of the known conditions at the critical point. It also satisfies the conditions along certain of the boundaries which probably separate “supercritical liquid” from “supercritical vapor.” The equation of state, though quite simple in form, is probably superior to any equation heretofore derived for water and water vapor in the critical region. Specifically, the deviations between the measured and computed values of pressure in the large majority of the cases were within three parts in one thousand. This coincides approximately with the overall uncertainty in P-V-T measurements. In view of these factors, the author recommends that the equation be used to derive values for such thermodynamic properties as specific heat at constant pressure, enthalpy, and entropy in the critical region.


1998 ◽  
Vol 12 (02) ◽  
pp. 191-205 ◽  
Author(s):  
Vu Van Hung ◽  
Nguyen Thanh Hai

By the moment method established previously on the basis of the statistical mechanics, the thermodynamic properties of a strongly anharmonic face-centered and body-centered cubic crystal with point defect are considered. The thermal expansion coefficient, the specific heat Cv and Cp, the isothermal and adiabatic compressibility, etc. are calculated. Our calculated results of the thermal expansion coefficient, the specific heat Cv and Cp… of W, Nb, Au and Ag metals at various temperatures agrees well with the measured values. The anharmonic effects in extended X-ray absorption fine structure (EXAFS) in the single-shell model are considered. We have obtained a new formula for anharmonic contribution to the mean square relative displacement. The anharmonicity is proportional to the temperature and enters the phase change of EXAFS. Our calculated results of Debye–Waller factor and phase change in EXAFS of Cu at various temperatures agrees well with the measured values.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Omid Askari

Chemical composition and thermodynamics properties of different thermal plasmas are calculated in a wide range of temperatures (300–100,000 K) and pressures (10−6–100 atm). The calculation is performed in dissociation and ionization temperature ranges using statistical thermodynamic modeling. The thermodynamic properties considered in this study are enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The calculations have been done for seven pure plasmas such as hydrogen, helium, carbon, nitrogen, oxygen, neon, and argon. In this study, the Debye–Huckel cutoff criterion in conjunction with the Griem’s self-consistent model is applied for terminating the electronic partition function series and to calculate the reduction of the ionization potential. The Rydberg and Ritz extrapolation laws have been used for energy levels which are not observed in tabulated data. Two different methods called complete chemical equilibrium and progressive methods are presented to find the composition of available species. The calculated pure plasma properties are then presented as functions of temperature and pressure, in terms of a new set of thermodynamically self-consistent correlations for efficient use in computational fluid dynamic (CFD) simulations. The results have been shown excellent agreement with literature. The results from pure plasmas as a reliable reference source in conjunction with an alternative method are then used to calculate the thermodynamic properties of any arbitrary plasma mixtures (mixed plasmas) having elemental atoms of H, He, C, N, O, Ne, and Ar in their chemical structure.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 810-813
Author(s):  
N.H. KIM-NGAN ◽  
P.E. BROMMER ◽  
J.J.M. FRANSE

Specific heat and thermal expansion measurements have been performed on Nd1−xLUxMn2 in the temperature range between 1.5K and 300K. Below 10K, anomalies are observed which are ascribed to a spin reorientation of the Nd sublattice. These anomalies are only slightly affected by the substitution of Nd by Lu. Large effects, however, are observed on the magnetic properties of the Mn sublattice. The antiferromagnetic order disappears for x exceeding 0.30. The data are analysed in terms of Grüneisen parameters. In the paramagnetic compound LuMn2, a spin-fluctuation contribution to the thermodynamic properties is observed. In the Nd-containing compounds, distinct contributions from the crystal field acting on the Nd ions can be distinguished. The variation of the magnetic properties of the Mn sublattice with the concentration of Lu is discussed.


1969 ◽  
Vol 47 (14) ◽  
pp. 1485-1491 ◽  
Author(s):  
Neil Waterhouse

The specific heat of copper heated in hydrogen at 1040 °C has been measured over the temperature range 0.4 to 3.0 °K and found to be anomalous. The anomaly occurs in the same temperature range as the solid hydrogen λ anomaly which, in conjunction with evidence of ortho to para conversion of hydrogen in the sample, suggests the presence of molecular hydrogen in the copper. The anomaly reported by Martin for "as-received" American Smelting and Refining Company (ASARCO) 99.999+ % pure copper has been briefly compared with the present results. The form of the anomaly produced by the copper-hydrogen specimen has been compared with Schottky curves using the simplest possible model, that for two level splitting of the degenerate J = 1 rotational state of the ortho-hydrogen molecule.Maintenance of the copper-hydrogen sample at ~20 °K for approximately 1 week removed the "hump" in the specific heat curve. An equation of the form Cp = γT + (464.34/(θ0c)3)T3 was found to fit these experimental results and produced a value for γ which had increased over that for vacuumannealed pure copper by ~2%.


Sign in / Sign up

Export Citation Format

Share Document