Influence of the Microwave Radiation on the Thermal Properties of Ni,Al Hydrotalcite-Like Compounds

2006 ◽  
Vol 514-516 ◽  
pp. 1284-1288 ◽  
Author(s):  
Patricia Benito ◽  
Francisco Martin Labajos ◽  
Vicente Rives

The thermal stability of Ni,Al-CO3 hydrotalcite-like compounds synthesized by the coprecipitation method and aged upon microwave-hydrothermal treatment for different periods of time was studied. The samples prepared were characterized by Elemental Analysis, PXRD, Thermal analyses (DTA and TG) and Temperature Programmed Reduction (TPR). The results show that the use of microwave radiation as a source of heating during the ageing treatment leads to an increase in the crystallinity of the solids, which determines their thermal stability.

Author(s):  
D.-H. Jung ◽  
N. Umirov ◽  
T. Kim ◽  
Z. Bakenov ◽  
J.-S. Kim ◽  
...  

Temperature programmed reduction (TPR) method was introduced to analyze the structural change and thermal stability of LixCoO2 (LCO) cathode material. The reduction peaks of delithiated LCO clearly represented the different phases of LCO. The reduction peak at a temperature below 250 °C can be attributed to the transformation of CoO2–like to Co3O4–like phase which is similar reduction patterns of CoO2 phase resulting from delithiation of LCO structure. The 2nd reduction peak at 300~375 °C corresponds to the reduction of Co3O4–like phase to CoO–like phase. TPR results indicate the thermal instability of delithiated LCO driven by CoO2–like phase on the surface of the delithiated LCO. In the TPR kinetics, the activation energies (Ea) obtained for as-synthesized LCO were 105.6 and 82.7 kJ mol-1 for Tm_H1 and Tm_H2, respectively, whereas Ea for the delithiated LCO were 93.2, 124.1 and 216.3 kJ mol-1 for Tm_L1, Tm_L2 and Tm_L3, respectively. As a result, the TPR method enables to identify the structural changes and thermal stability of each phase and effectively characterize the distinctive thermal behavior between as-synthesized and delithiated LCO.


2009 ◽  
Vol 1155 ◽  
Author(s):  
Kazuhisa Kawano ◽  
Hiroaki Kosuge ◽  
Noriaki Oshima ◽  
Tadashi Arii ◽  
Yutaka Sawada ◽  
...  

AbstractThermal properties of five divalent ruthenium precursors with three types of structures were examined by thermal analyses. Their volatilities and the relationships between their structure and thermal stability were compared by TG analysis. Precursor volatility was found to be inversely proportional to molecular weight. The DSC result showed that substituting a linear pentadienyl ligand for a cyclopentadienyl ligand decreased the thermal stability of a precursor and precursors could be liquefied by attaching an alkyl group longer than methyl group to a Cp ligand. As a result of TG-MS analyses for Ru(DMPD)(EtCp) and Ru(EtCp)2, 2,4-dimethyl-1,3-pentadiene was found to be a thermolysis product of Ru(DMPD)(EtCp) though no thermolysis products of Ru(EtCp)2were observed. These results show that the volatility and decomposition temperature of a divalent ruthenium precursor can be designed by adjusting the precursor's structure.


Author(s):  
Hongtao Zhang ◽  
Youjing Zhao ◽  
Jingli Li ◽  
Lijie Shi ◽  
Min Wang

AbstractThis paper focuses on thermal stability of molten salts, operating temperature range and latent heat of molten salts at a high temperature. In this experiment, multi-component molten salts (purified Solar Salt) composed of purified NaNO


2020 ◽  
Vol 990 ◽  
pp. 106-110
Author(s):  
Mohd Zulkifli Mohamad Noor ◽  
Mohamad Anas Mohd Azmi ◽  
Mohd Shaiful Zaidi Mad Desa ◽  
Mohd Bijarimi Mat Piah ◽  
Azizan Ramli

Neoprene reinforced polymer has become an attraction in current research and development of new material blend. In this invention, neoprene was chosen to be enhance to polyurethane because of their superior properties that possess extraordinary mechanical, electrical, optical and thermal properties on prosthetic foot. In this research, polyurethane was chosen due to good rigidity, easy processing and low cost. The reinforcement polyurethane with neoprene is expected to improve the properties of polyurethane. The objective of this research was conducted to investigate the effect of neoprene contents on thermal properties of polyurethane reinforced neoprene on prosthetic foot. The effect of neoprene on thermal properties neoprene reinforced polyurethane was analysed in term of its thermal stability by thermal gravimetric analysis (TGA). Moreover, the visual of small topographic details on the surface of polyurethane/neoprene blends will be examined by scanning electron microscope (SEM). Based on result, the thermal properties show the great enhancement at high neoprene contents which is 1.0wt%. The thermal stability of polyurethane reinforced neoprene improves when the temperature where decomposition starts to occurs are higher than decomposition temperature of pure polyurethane. Then, thermal conductivity of polyurethane shows the great improvement after the addition of neoprene. Lastly, the smooth surface and visible of sheets pattern on surface represent the present of neoprene disperse into polymer that enhance brittleness. Thus, the presence of neoprene has clearly enhanced the thermal stability of the polyurethane. Table 1 shows formulation of neoprene and polyurethane.


2011 ◽  
Vol 415-417 ◽  
pp. 261-264
Author(s):  
Yuan Ren ◽  
Zheng Xi ◽  
Wen Jun Gan ◽  
Liang Zhang ◽  
Jing Zhang ◽  
...  

A siloxane-containing dianhydride, succinic anhydride terminated polydimethylsiloxane (DMS-Z21) was selected to cure diglycidyl ether of bisphenol-A based epoxy resin (DGEBA). The cure kinetics and thermal properties were investigated by nonisothermal and isothermal differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA), respectively. The activation energy (Ea) of the curing reaction was obtained based on the methods of Kissinger and isothermal measurements. The results of the thermogravimetric analyses of the DGEBA/DMS-Z21 system showed that the thermal stability of the DGEBA/DMS-Z21 system was slightly higher than the DGEBA/MeTHPA system.


2019 ◽  
Vol 972 ◽  
pp. 172-177
Author(s):  
Sirirat Wacharawichanant ◽  
Patteera Opasakornwong ◽  
Ratchadakorn Poohoi ◽  
Manop Phankokkruad

This work studied the effects of various types of cellulose fibers on the morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) (90/10 w/w) blends. The PLA/PEC blends before and after adding cellulose fibers were prepared by melt blending method in the internal mixer and molded by compression method. The morphological analysis observed that the presence of cellulose in PLA did not change the phase morphology of PLA, and PLA/cellulose composite surfaces were observed the cellulose fibers inserted in PLA matrix and fiber pull-out. The phase morphology of PLA/PEC blends was changed from brittle fracture to ductile fracture behavior and showed the phase separation between PLA and PEC phases. The presence of celluloses did not improve the compatibility between PLA and PEC phases. The tensile stress and strain curves found that the tensile stress of PLA was the highest value. The addition of all celluloses increased Young’s modulus of PLA. The PEC presence increased the tensile strain of PLA over two times when compared with neat PLA and PLA was toughened by PEC. The incorporation of cellulose fibers in PLA/PEC blends could improve Young’s modulus, tensile strength, and stress at break of the blends. The thermal stability showed that the degradation temperatures of all types of cellulose were less than the degradation temperatures of PLA. Thus, the incorporation of cellulose in PLA could not enhance the thermal stability of PLA composites and PLA/PEC composites. The degradation temperature of PEC was the highest value, but it could not improve the thermal stability of PLA. The incorporation of cellulose fibers had no effect on the melting temperature of the PLA blend and composites.


2011 ◽  
Vol 284-286 ◽  
pp. 1778-1781 ◽  
Author(s):  
Zhe Zhou ◽  
Hou Yong Yu ◽  
Mei Fang Zhu ◽  
Zong Yi Qin

The composites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different microcrystalline cellulose (MCC) contents were prepared by a solvent casting method. The effects of MCC on the thermal properties of PHBV were studied by TGA and DSC. The DSC results showed that the melt crystallization temperature of the PHBV/MCC increased from 41.9 °C for PHBV to 59.8 °C for the composites containing 20 wt. % MCC, which indicated that the crystallization of PHBV became easier with the addition of MCC. It also illustrated that the MCC could be used as an effective nucleation agent for the crystallization of PHBV. Moreover, it was found that the thermal stability of the PHBV/MCC composites increased compared with the neat PHBV.


2011 ◽  
Vol 239-242 ◽  
pp. 294-297
Author(s):  
Cun Jin Xu ◽  
Qun Lü ◽  
Hai Ke Feng

A ternary Eu(III) complex with salicylic acid (Hsal) ando-phenanthroline (phen) was synthesized and then incorporated into silica matrix by sol-gel method. The luminescence behavior of the complex in silica gel was studied compared with that of the pure complex by means of emission, excitation spectra and thermogravimetic analysis. The results indicate that the complex Eu(sal)3(phen) in silica gel shows fewer emission lines than pure Eu(sal)3(phen) and the luminescence intensity ratio of the5D0→7F2transition to the5D0→7F1transition is lower than that of the latter. The thermal stability of Eu(sal)3(phen) is enhanced greatly through the introduction of the complex into silica matrix.


2011 ◽  
Vol 374-377 ◽  
pp. 1426-1429
Author(s):  
Xiao Meng Guo ◽  
Jian Qiang Li ◽  
Xian Sen Zeng ◽  
De Dao Hong

In this study, the thermal properties of a kind of new geotextile materials, so called controlled permeable formwork (CPF), were studied. Thermo-gravimetric analysis showed that the weight of CPF didn’t change much between 0~350 °C. Dynamic mechanical analysis showed that the storage modulus of CPF reduced from 25 MPa to around 10 MPa when the temperature rose to above 100 °C. The strength of sample decreased slightly with the increase of the temperature. The breaking elongation changed slightly with a maximum at 80 °C. The CPF showed excellent thermal stability and was suitable for general use in construction work.


Author(s):  
Paul M. Jones ◽  
Lei Li ◽  
Yiao-Tee Hsia

The thermal stability of Zdol 4000, 7800 and Ztetraol perfluoropolyethers (PFPE) have been studied in both the bulk with thermogravimetric analysis (TGA) and in thin film form with temperature programmed desorption spectroscopy (TPD). The TGA results have been interpreted to yield an evaporation activation energy for both Zdol 4000 (13 kcal/mole) and Zdol 7800 (19 kcal/mole). A larger activation energy is also found for all three samples investigated that is consistent with polymer decomposition (22, 27 and 21 kcal/mole respectively). The TPD threshold has been found to be approximately similar all three samples (∼500 K). The temperature of decomposition was also found to be similar for all three samples and was dominated by the CF2O+ mass fragment at ∼660 K. Two desorption maximums were observed for both Zdol 4000 and Ztetraol indicating the similarity in their decomposition chemistry. In contrast only one desorption peak was observed from Zdol 7800 (675 K). A CF3+ fragment was not observed in any of the TPD spectra indicating the absence an acidic decomposition path for all of the Fomblin Z polymers studied.


Sign in / Sign up

Export Citation Format

Share Document