scholarly journals Thermal and Structural Stabilities of LixCoO2 cathode for Li Secondary Battery Studied by a Temperature Programmed Reduction

Author(s):  
D.-H. Jung ◽  
N. Umirov ◽  
T. Kim ◽  
Z. Bakenov ◽  
J.-S. Kim ◽  
...  

Temperature programmed reduction (TPR) method was introduced to analyze the structural change and thermal stability of LixCoO2 (LCO) cathode material. The reduction peaks of delithiated LCO clearly represented the different phases of LCO. The reduction peak at a temperature below 250 °C can be attributed to the transformation of CoO2–like to Co3O4–like phase which is similar reduction patterns of CoO2 phase resulting from delithiation of LCO structure. The 2nd reduction peak at 300~375 °C corresponds to the reduction of Co3O4–like phase to CoO–like phase. TPR results indicate the thermal instability of delithiated LCO driven by CoO2–like phase on the surface of the delithiated LCO. In the TPR kinetics, the activation energies (Ea) obtained for as-synthesized LCO were 105.6 and 82.7 kJ mol-1 for Tm_H1 and Tm_H2, respectively, whereas Ea for the delithiated LCO were 93.2, 124.1 and 216.3 kJ mol-1 for Tm_L1, Tm_L2 and Tm_L3, respectively. As a result, the TPR method enables to identify the structural changes and thermal stability of each phase and effectively characterize the distinctive thermal behavior between as-synthesized and delithiated LCO.

2006 ◽  
Vol 514-516 ◽  
pp. 1284-1288 ◽  
Author(s):  
Patricia Benito ◽  
Francisco Martin Labajos ◽  
Vicente Rives

The thermal stability of Ni,Al-CO3 hydrotalcite-like compounds synthesized by the coprecipitation method and aged upon microwave-hydrothermal treatment for different periods of time was studied. The samples prepared were characterized by Elemental Analysis, PXRD, Thermal analyses (DTA and TG) and Temperature Programmed Reduction (TPR). The results show that the use of microwave radiation as a source of heating during the ageing treatment leads to an increase in the crystallinity of the solids, which determines their thermal stability.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 908 ◽  
Author(s):  
Muhammad Shahzad Kamal ◽  
Syed Muhammad Shakil Hussain ◽  
Lionel Talley Fogang

Long-term thermal stability of surfactants under harsh reservoir conditions is one of the main challenges for surfactant injection. Most of the commercially available surfactants thermally degrade or precipitate when exposed to high-temperature and high-salinity conditions. In this work, we designed and synthesized three novel betaine-based polyoxyethylene zwitterionic surfactants containing different head groups (carboxybetaine, sulfobetaine, and hydroxysulfobetaine) and bearing an unsaturated tail. The impact of the surfactant head group on the long-term thermal stability, foam stability, and surfactant–polymer interactions were examined. The thermal stability of the surfactants was assessed by monitoring the structural changes when exposed at high temperature (90 °C) for three months using 1H-NMR, 13C-NMR, and FTIR analysis. All surfactants were found thermally stable regardless of the headgroup and no structural changes were evidenced. The surfactant–polymer interactions were dominant in deionized water. However, in seawater, the surfactant addition had no effect on the rheological properties. Similarly, changing the headgroup of polyoxyethylene zwitterionic surfactants had no major effect on the foamability and foam stability. The findings of the present study reveal that the betaine-based polyoxyethylene zwitterionic surfactant can be a good choice for enhanced oil recovery application and the nature of the headgroup has no major impact on the thermal, rheological, and foaming properties of the surfactant in typical harsh reservoir conditions (high salinity, high temperature).


Author(s):  
Lijie Qu ◽  
Zhenyu Wang ◽  
Jing Qian ◽  
Zhengbin He ◽  
Songlin Yi

Abstract Acidic aluminum sulfate hydrolysis solutions can be used to catalyze the thermal degradation of wood in a mild temperature environment, and thus reduce the temperature required for heat treatment process. To improve the dimensional and thermal stability of Chinese fir during heat treatment at 120 °C, 140 °C and 160 °C, this study investigated the effects of soaking pretreatment with 5%, 10% and 15% aluminum sulfate on the chemical and structural changes of the heat-treated Chinese fir. The results indicated that the samples treated at 15% aluminum sulfate concentration and 160 °C heat treatment achieved the best dimensional and thermal stability. Chemical analyses by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the catalysis of aluminum sulfate resulted in degradation of hemicelluloses during the heat treatment, and an increase in the soaking concentration and heat treatment temperature also affected the thermal degradation of celluloses. The scanning electron microscope (SEM) and mass changes test results proved that the hydrolyzed aluminum flocs mainly adhered to the inner wall of the wood tracheid as spherical precipitates, and when the soaking concentration reached 10% and 15%, a uniform soaking effect could be achieved. The thermogravimetric (TG) analysis revealed the soaking pretreatment effectively improved the thermal stability of the heat-treated wood by physically wrapping and promoting the formation of a carbon layer on the wood surface during heat treatment. Thus, aluminum sulfate soaking pretreatment exerted a great effect on the dimensional and thermal stability of wood, allowing heat treatment to be performed at a lower temperature.


2008 ◽  
Vol 584-586 ◽  
pp. 905-910 ◽  
Author(s):  
Petr Homola ◽  
Margarita Slámová ◽  
P. Sláma ◽  
Miroslav Cieslar

Accumulative Roll Bonding (ARB) is a severe plastic deformation process that allows producing ultrafine-grained materials (UFG). UFG sheets exhibit enhanced strength and very fine grain structure. Foils used as fins in heat exchangers have to be very thin but must exhibit high strength combined with relatively high formability. Thus, materials produced using ARB may fulfil the exacting requirements on foil properties for such applications. The thermal stability of Al-Fe- Mn-Si foils produced using ARB and subsequent cold rolling was studied and compared with conventionally cold rolled (CCR) counterparts. The stability was assessed by isothermal annealing in the temperature range from 200 to 450 °C. Electron back scatter diffraction in a scanning electron microscope and transmission electron microscopy examinations of foils microstructure in the deformed and annealed states allowed the monitoring of structural changes. The magnitude of mechanical properties changes due to annealing was evaluated by microhardness measurements. Significant hardness increase was observed after annealing at 200 °C only in the ARB samples and was assigned to an annealing-induced hardening. The CCR foil exhibits higher non-recrystallized fraction and smaller mean lamellae boundary spacing in the temperature interval of 200-250 °C than ARB foils. The annealing at 450 °C results in identical hardness values and fully recrystallized microstructure of all foils, regardless the method used for their manufacturing. However, the ARB samples show higher stability of the refined substructure than their cold rolled counterparts due to continuous recrystallization occurring in the ARB foils.


2005 ◽  
Author(s):  
Takashi Yamamoto ◽  
Yukiko Izumi ◽  
Takashi Miyamoto ◽  
Hirohumi Seki ◽  
Hideki Hashimoto ◽  
...  

Author(s):  
Paul M. Jones ◽  
Lei Li ◽  
Yiao-Tee Hsia

The thermal stability of Zdol 4000, 7800 and Ztetraol perfluoropolyethers (PFPE) have been studied in both the bulk with thermogravimetric analysis (TGA) and in thin film form with temperature programmed desorption spectroscopy (TPD). The TGA results have been interpreted to yield an evaporation activation energy for both Zdol 4000 (13 kcal/mole) and Zdol 7800 (19 kcal/mole). A larger activation energy is also found for all three samples investigated that is consistent with polymer decomposition (22, 27 and 21 kcal/mole respectively). The TPD threshold has been found to be approximately similar all three samples (∼500 K). The temperature of decomposition was also found to be similar for all three samples and was dominated by the CF2O+ mass fragment at ∼660 K. Two desorption maximums were observed for both Zdol 4000 and Ztetraol indicating the similarity in their decomposition chemistry. In contrast only one desorption peak was observed from Zdol 7800 (675 K). A CF3+ fragment was not observed in any of the TPD spectra indicating the absence an acidic decomposition path for all of the Fomblin Z polymers studied.


Nanoscale ◽  
2019 ◽  
Vol 11 (22) ◽  
pp. 10716-10726 ◽  
Author(s):  
Raj Thakur ◽  
Armin VahidMohammadi ◽  
Jorge Moncada ◽  
William R. Adams ◽  
Mingyang Chi ◽  
...  

We report the thermal stability of multilayered V2CTx MXene by combining various techniques to elucidate and monitor the molecular, electronic, and structural changes in the material.


Sign in / Sign up

Export Citation Format

Share Document