Precipitation of Niobium Carbonitrides: Chemical Composition Measurements and Modeling

2007 ◽  
Vol 539-543 ◽  
pp. 4196-4201 ◽  
Author(s):  
Michel Perez ◽  
Eglantine Courtois ◽  
Daniel Acevedo Reyes ◽  
Thierry Epicier ◽  
Philippe Maugis

High Resolution Transmission Electron Microscope and Electron Energy Loss Spectroscopy and have been used to characterize the structure and chemical composition of niobium carbonitrides in the ferrite of a Fe-Nb-C-N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed sub-stoichiometric niobium carbonitrides. In order to predict the chemical composition of these precipitates, a thermodynamical formalism has been developed to evaluate (i) the nucleation and growth rates (classical nucleation theory) and (ii) the chemical composition of nuclei and existing precipitates. A model based on the numerical resolution of former equations, is used to compute precipitates size distribution evolution at a given temperature. The predicted compositions are in very good agreement with experimental results.

2007 ◽  
Vol 7 (19) ◽  
pp. 5081-5091 ◽  
Author(s):  
C. Marcolli ◽  
S. Gedamke ◽  
T. Peter ◽  
B. Zobrist

Abstract. A differential scanning calorimeter (DSC) was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD) samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K). For ATD-induced ice formation Classical Nucleation Theory (CNT) offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle) in CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (log)normally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0.1 μm to exhibit on average one active site.


Author(s):  
Xi Xi ◽  
Hong Liu ◽  
Chang Cai ◽  
Ming Jia ◽  
Weilong Zhang

Abstract The work attempts to analyze the performance of homogeneous nucleation by using the non-equilibrium thermodynamics theory and the classical nucleation theory. A nucleation rate graph was constructed under a wide range of operating temperature conditions. The results indicate that the superheat limit temperature (SLT) estimated by the modified homogeneous nucleation sub-model is in good agreement with the experimental results. The nucleation rate increases exponentially with the liquid temperature rise when the liquid temperature exceeds the SLT under atmospheric pressure. The superheated temperature needed to trigger the bubble nucleation decreases with the elevated ambient pressure.


1993 ◽  
Vol 321 ◽  
Author(s):  
G. Sundar ◽  
E. A. Kenik ◽  
J. J. Hoyt ◽  
S. Spooner

ABSTRACTNucleation and growth studies were conducted on Al-Zn alloys at several temperatures using transmission electron Microscopy (TEM) with an in-situ furnace. The value of the critical undercooling was established by noting the lowest temperature at which precipitates were no longer observed, following a quench into the two-phase metastable region. These results were compared with the Langer-Schwartz Model of nucleation and growth in which it is predicted that the half-completion time (i.e, the time required for the supersaturation to reach half its initial value) diverges for initial supersaturations which are higher than those predicted by the classical nucleation theory.


2011 ◽  
Vol 01 (01) ◽  
pp. 41-52 ◽  
Author(s):  
ANDREJA BENČAN ◽  
ELENA TCHERNYCHOVA ◽  
SAŠO ŠTURM ◽  
ZORAN SAMARDŽIJA ◽  
BARBARA MALIČ ◽  
...  

The article describes the approaches for a reliable, quantitative compositional analysis of lead-free perovskite ceramics in powder and bulk forms that contain volatile alkaline compounds. The combination of scanning electron microscopy (SEM) and transmission electron microcopy (TEM) with electron-probe analytical techniques, such as energy-dispersive X-ray spectroscopy (EDS), wavelength-dispersive X-ray spectroscopy (WDS) and electron-energy-loss spectroscopy (EELS) makes it possible to determine the true chemical composition, from precursor powders to synthesized ceramics or single crystals. The microscale (SEM) and nanoscale (TEM) analytical methods also give an insight into the local variations of the chemical composition.


2019 ◽  
Vol 34 (4) ◽  
pp. 339-344
Author(s):  
S. Wang ◽  
J. Cai ◽  
H. D. Xu ◽  
H. L. Tao ◽  
Y. Cui ◽  
...  

Crystal structure and electronic structure of YMnO3 were investigated by X-ray diffraction and transmission electron microscopy related techniques. According to the density of states (DOS), the individual interband transitions to energy loss peaks in the low energy loss spectrum were assigned. The hybridization of O 2p with Mn 3d and Y 4d analyzed by the partial DOS was critical to the ferroelectric nature of YMnO3. From the simulation of the energy loss near-edge structure, the fine structure of O K-edge was in good agreement with the experimental spectrum. The valence state of Mn (+3) in YMnO3 was determined by a comparison between experiment and calculations.


2018 ◽  
Vol 115 (21) ◽  
pp. 5348-5352 ◽  
Author(s):  
Haiyang Niu ◽  
Pablo M. Piaggi ◽  
Michele Invernizzi ◽  
Michele Parrinello

Silica is one of the most abundant minerals on Earth and is widely used in many fields. Investigating the crystallization of liquid silica by atomic simulations is of great importance to understand the crystallization mechanism; however, the high crystallization barrier and the tendency of silica to form glasses make such simulations very challenging. Here we have studied liquid silica crystallization to β-cristobalite with metadynamics, using X-ray diffraction (XRD) peak intensities as collective variables. The frequent transitions between solid and liquid of the biased runs demonstrate the highly successful use of the XRD peak intensities as collective variables, which leads to the convergence of the free-energy surface. By calculating the difference in free energy, we have estimated the melting temperature of β-cristobalite, which is in good agreement with the literature. The nucleation mechanism during the crystallization of liquid silica can be described by classical nucleation theory.


2005 ◽  
Vol 11 (5) ◽  
pp. 410-420 ◽  
Author(s):  
Valéry Y. Gertsman ◽  
Queenie S.M. Kwok

Nanophase aluminum powder was characterized in a field-emission-gun transmission electron microscope (TEM). Different techniques were used to investigate the structure of the particles, including conventional bright-field and dark-field imaging, scanning transmission electron microscopy (STEM), high-resolution lattice imaging, diffraction studies, energy dispersive X-ray spectroscopy (EDS) analysis and mapping, and electron energy loss spectroscopy (EELS) analysis and mapping. It has been established that the particle cores consist of aluminum single crystals that sometimes contain crystal lattice defects. The core is covered by a passivating layer of aluminum oxide a few nanometers thick. The alumina is mostly amorphous, but evidences of partial crystallinity of the oxide were also found. The thickness of this layer was measured using different techniques, and the results are in good agreement with each other. The particles are agglomerated in two distinct ways. Some particles were apparently bonded together during processing before oxidation. These mostly form dumbbells covered by a joint oxide layer. Also, oxidized particles are loosely assembled into relatively large clusters.


2007 ◽  
Vol 7 (4) ◽  
pp. 9687-9716
Author(s):  
C. Marcolli ◽  
S. Gedamke ◽  
T. Peter ◽  
B. Zobrist

Abstract. A differential scanning calorimeter (DSC) was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD) samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K). For ATD-induced ice formation Classical Nucleation Theory (CNT) offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle) in heterogeneous CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (log)normally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0.1 μm to exhibit on average one active site.


2006 ◽  
Vol 6 (10) ◽  
pp. 3035-3047 ◽  
Author(s):  
O. Möhler ◽  
H. Bunz ◽  
O. Stetzer

Abstract. Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD) in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere) aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD)−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192) kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001) and surface-based (Tabazadeh et al., 2002) nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.


2012 ◽  
Vol 186 ◽  
pp. 70-73 ◽  
Author(s):  
Jolanta Borysiuk ◽  
Piotr Dłużewski ◽  
Zbigniew Zytkiewicz ◽  
Marta Sobańska ◽  
Kamil Kłosek ◽  
...  

Growth of high quality GaN/AlN heterostructures by plasma assisted molecular beam epitaxy (PAMBE) is possible with excess of Ga on the surface. During growth of AlN this additional Ga acts as surfactant and improves mobility of the Al adatoms on the growing surface, at the possible cost of Ga segregation and creation of mixed AlGaN interlayer. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to determine chemical composition of high crystallographic quality GaN-AlN multilayer structure. It was shown that segregation occurs at AlN-GaN heterointerfaces, while GaN-AlN interfaces have abrupt stepwise change of the chemical composition. HRTEM results show creation of trench defects at the periphery of growing AlN islands in the case of nonoptimized growth.


Sign in / Sign up

Export Citation Format

Share Document