Phase Constitution and Heat Treatment Behavior of Zr-Nb Alloys

2007 ◽  
Vol 561-565 ◽  
pp. 1435-1440 ◽  
Author(s):  
Masahiko Ikeda ◽  
Tsuyoshi Miyazaki ◽  
Satoshi Doi ◽  
Michiharu Ogawa

Phase constitution in the solution-treated and quenched state and the heat treatment behavior were investigated by electrical resistivity, hardness, and elastic modulus measurements, X-ray diffraction, and optical microscopy. Hexagonal martensite and the β phase were identified in the Zr-5mass%Nb alloy. β and ω phases were identified in the Zr-10 and 15mass%Nb alloys, and only the β phase was identified in the Ti-20Nb alloy. Resistivity at RT, Vickers hardness and elastic modulus increased up to 10Nb and then decreased dramatically at 15Nb. Above 15Nb, these values slightly decreased. The elastic moduli for 15Nb and 20Nb were 59.5 and 55.5 GPa, respectively. On isochronal heat treatment, the isothermal ω phase precipitated between 473 and 623 K and then the α phase precipitated in the 10Nb, 15Nb and 20Nb alloys.

2014 ◽  
Vol 802 ◽  
pp. 457-461 ◽  
Author(s):  
José Hélio Duvaizem ◽  
N.M.F. Mendes ◽  
J.C.S. Casini ◽  
A.H. Bressiani ◽  
H. Takiishi

Ti-13Nb-13Zr alloy produced via powder metallurgy was submitted to heat treatment under various conditions and the effects on microstructure and elastic modulus were investigated. Heat treatment was performed using temperatures above and below α/β transus combined with different cooling rates – furnace cooling and water quenching. Microstructure and phases were analyzed employing scanning electron microscopy and X-ray diffraction. Elastic Modulus was determined using a dynamic mechanical analyzer (DMA). The results indicated that α phase precipitation and elastic modulus values increased after heat treatment performed using temperature below α/β transus. However, when it was performed above α/β transus and using higher cooling rate, a decrease in elastic modulus was observed despite higher α phase precipitation, indicating that the microstructural modifications observed via SEM, due to the presence of martensitic α phase, influenced on elastic modulus values.


2007 ◽  
Vol 546-549 ◽  
pp. 1349-1354 ◽  
Author(s):  
A.V. Dobromyslov

Martensitic β→α′(α″) transformation, β→ω transformation and eutectoid decomposition in a series of Ti-base alloys with d transition metals of Groups I, IV-VIII have been investigated using the techniques of X-ray diffraction, optical and transmission electron microscopy. Phase and structural information is given on the non-equilibrium and metastable modifications occurring in these alloys after quenching from high-temperature β-field and aging. The conditions of the orthorhombic α″-phase, ω-phase and metastable β-phase formation in binary titanium–base alloys with d-metals of V-VIII groups were investigated. It was established that the position of the alloying metal in the Periodic Table defines the presence or absence of the α″-phase in the alloy after quenching and the minimum concentration of the alloying metal necessary for formation of the α″-phase, ω-phase and metastable β-phase.


2015 ◽  
Vol 815 ◽  
pp. 297-300 ◽  
Author(s):  
Xing Ping Fan ◽  
Ben Ju Wang ◽  
Xiao Qing Ren ◽  
Fu Chang Peng

The medical Ti-20Mo alloys were fabricated by powder metallurgy. The effects of sintering temperature on the phase, the morphology and the mechanical properties of Ti-Mo alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties test methods. The results showed that after sintering at 1200 °C, the microstructure of Ti-Mo alloys mainly consisted of α phase. The increasing sintering time could promote α→β phase transition, thus the flexural strength and the elastic modulus of Ti-Mo alloys could be controlled. When the sintering temperature was 1300 °C, molybdenum content was 20%, the bending strength and the compressive strength of Ti-20Mo alloy were 1369MPa and 2602MPa respectively, and the elastic modulus was 3.4GPa. It may be concluded that the Ti-20Mo alloys is prospective prostheses materials.


2020 ◽  
Vol 405 ◽  
pp. 333-338
Author(s):  
Roland Haubner ◽  
Susanne Strobl ◽  
Paul Linhardt

The brass CuZn36Pb2 is widely used for fittings, valves and other installation materials. Failures are observed occasionally caused by corrosion. Considering the Cu-Zn phase diagram only α-phase exists in the range of 650 and 300 °C. At higher temperatures α- and β-phase is stable and at lower temperatures α- and β´-phase exist. Since the β-phase is Zn-enriches, it is attacked severely by corrosion. In the recent work brass samples were heat treated at temperatures between 850 and 200 °C to study the microstructural changes and the corresponding electrochemical properties. Potentiostatic corrosion tests were applied in artificial fresh water and sea water at different potential settings. After a heat treated at 850 °C the brass has formed b-phase which can be shown by metallography. At lower temperatures the microstructure is fine grained and no β-phase was observed. To verify the presence of β´-phase a heat treatment at 200 °C was performed but no β´-phase was observed, which was confirmed additionally by X-ray diffraction. Again, after corrosion tests the samples were investigated by metallography and the β-phase was obviously more attacked than the α-phase.


1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.


2011 ◽  
Vol 172-174 ◽  
pp. 190-195 ◽  
Author(s):  
Giorgia T. Aleixo ◽  
Eder S.N. Lopes ◽  
Rodrigo Contieri ◽  
Alessandra Cremasco ◽  
Conrado Ramos Moreira Afonso ◽  
...  

Ti-based alloys present unique properties and hence, are employed in several industrial segments. Among Ti alloys, β type alloys form one of the most versatile classes of materials in relation to processing, microstructure and mechanical properties. It is well known that heat treatment of Ti alloys plays an important role in determining their microstructure and mechanical behavior. The aim of this work is to analyze microstructure and phases formed during cooling of β Ti-Nb-Sn alloy through different cooling rates. Initially, samples of Ti-Nb-Sn system were prepared through arc melting furnace. After, they were subjected to continuous cooling experiments to evaluate conditions for obtaining metastable phases. Microstructure analysis, differential scanning calorimetry and X-ray diffraction were performed in order to evaluate phase transformations. Depending on the cooling rate and composition, α” martensite, ω phase and β phase were obtained. Elastic modulus has been found to decrease as the amount of Sn was increased.


2012 ◽  
Vol 182-183 ◽  
pp. 259-264
Author(s):  
Jia Wei Duan ◽  
Qiang Dou

In this study polypropylene (PP) composites containing β-nucleating agent (NT-C) and talc filler were prepared by melt compounding. The melting and crystallization behavior, morphology and mechanical properties of the composites were studied by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), polarized light microscopy (PLM) and mechanical tests. The results indicate that talc suppresses the formation of β phase, but promotes the formation of α phase. The Izod notched impact strength and tensile strength of β-PP/talc composites are superior to those of PP/talc composites, indicating an outstanding balance of stiffness and toughness of β-PP/talc composites.


2003 ◽  
Vol 18 (8) ◽  
pp. 1827-1836 ◽  
Author(s):  
Mirko Schoenitz ◽  
Edward L. Dreizin

Mechanically alloys in the Al–Mg binary system in the range of 5–50 at.% Mg were produced for prospective use as metallic additives for propellants and explosives. Structure and composition of the alloys were characterized by x-ray diffraction microscopy (XRD) and scanning electron microscopy. The mechanical alloys consisted of a supersaturated solid solution of Mg in the α aluminum phase, γ phase (Al12Mg17), and additional amorphous material. The strongest supersaturation of Mg in the α phase (20.8%) was observed for bulk Mg concentrations up to 40%. At 30% Mg, the γ phase formed in quantities detectable by XRD; it became the dominating phase for higher Mg concentrations. No β phase (Al3Mg2) was detected in the mechanical alloys. The observed Al solid solution generally had a lower Mg concentration than the bulk composition. Thermal stability and structural transitions were investigated by differential scanning calorimetry. Several exothermic transitions, attributed to the crystallization of β and γ phases were observed. The present work provides the experimental basis for the development of detailed combustion and ignition models for these novel energetic materials.


1985 ◽  
Vol 38 (8) ◽  
pp. 1177 ◽  
Author(s):  
IR Castleden ◽  
SR Hall ◽  
S Nimgirawath ◽  
S Thadaniti ◽  
AH White

The following substituted 2-phenyl-4H-1-benzopyran-4-ones have been isolated from the dried flowers of Combretum quadrangulare Kurz ( Combretaceae ): 5-hydroxy-3,3′,4′,5′,7-pentamethoxy ( combretol ) (1), 3′,5-dihydroxy-3,4′,7-trimethoxy ( ayanin ) (2) and 4′,5-dihydroxy- 3,3′,5′,7-tetramethoxy (3). The last substance (3) was obtained as a mixture of two polymorphic forms (α and β) each of which was characterized by X-ray diffraction. Diffractometer data at 295 K were refined by full matrix least squares to residuals of 0.043 (1181 'observed' reflections) for the α-phase and 0.044 (1421) for the β phase of (3). Crystals of the α-phase of (3) are triclinic, Pī, a 12.663(6), b 9.592(4), c 7.444(4) Ǻ, α 102.48(3), β 101.39(4), γ 91.72(4)°,Z 2. Crystals of the β-phase of (3) are monoclinic P21/n, a 17.139(8), b 12.728(6), c 7.845(7) Ǻ, β 95.07(6)°, Z 4. An unambiguous synthesis of (3) was also achieved.


2007 ◽  
Vol 546-549 ◽  
pp. 619-622 ◽  
Author(s):  
Jin Shan Zhang ◽  
Yong Jun Xue ◽  
You Jun Guo ◽  
Chun Xiang Xu ◽  
Wei Liang

Effect of Si on the forming ability of quasicrystalline phase in Al65Cu20Fe15 alloys fabricated under conventional casting conditions has been studied using X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy (SEM). The results show that under the conventional casting conditions, it is found that the addition of certain amount of Si into the Al-Cu-Fe melts can change the formation of Al62.5Cu25Fe12.5 quasicrystals during the solidification process. Compared with Al65Cu20Fe15 alloy, Al64.5Cu20Fe15Si0.5 alloy has smaller volume fraction of β phase solidifying initially, larger volume fraction of the quasicrystal phase generating in the subsequent peritectic reaction, and larger volume fraction of ω phase solidifying finally. Both experimental results and the theory of Hume-Rothery show that addition of Si can promote the formation ability of the icosahedral quasicrystalline Al62.5Cu25Fe12.5 phase in Al-Cu-Fe alloy.


Sign in / Sign up

Export Citation Format

Share Document