Shrinkage Optimization of Flat Receptacle Using the Finite Element Method

2008 ◽  
Vol 575-578 ◽  
pp. 478-482 ◽  
Author(s):  
Zhen Ying Xu ◽  
Yun Wang ◽  
Pei Long Dong ◽  
Kai Xiao

Flat receptacle, which is used in extruding the large aluminum profiles, is in harsh work conditions. Due to the irregularity of inner hole of flat receptacle, inconsistent resistance of shrinking fitting affects the inner hole within which nonuniform deformation occurs. If the nonuniformity exceeds the specified dimension accuracy, tiresome work including mould repairing and structure optimization has to be done. ANSYS is used to simulate the flat receptacle. It is shown that the maximum stress appears in the arc area of inner hole. Therefore, we present one new method using the preloaded layer with changeable shrinkage to replace the preloaded layer with uniform shrinkage. Considering the processing and assembling factors, we adopt the elliptical outer layer and circular inner layer as the new structure. Then the optimizations of flat receptacle with uniform and changeable shrinkage are implemented using the optimizing module, receptively. The optimized results show the maximum equivalent stress in the corner of inner-hole decreases about 5.47% if adopting the changeable shrinkage. The numerical simulation results show that the feasibility of changeable shrinkage and elliptical preloaded layer.

2011 ◽  
Vol 383-390 ◽  
pp. 5669-5673
Author(s):  
Song Ling Wang ◽  
Zhe Sun ◽  
Zheng Ren Wu

For the large centrifugal fan impeller, its working condition generally is bad, and its geometry generally is complex. So its displacements and stresses distribution are also complex. In this paper, we can obtain the fan impeller’s displacements and stresses distribution accurately through numerical simulation in G4-73 type centrifugal fan impeller using the finite element method software ANSYS. The calculation result shows that the maximum total displacement of the impeller is m, it occurs on the position of the half of the blade near the outlet of the impeller; and the maximum equivalent stress of the impeller is 193 MPa, it occurs on the contacted position of the blade and the shroud near inlet of the impeller. Furthermore, check the impeller strength, the result shows that the strength of the impeller can meet the requirement.


2021 ◽  
Vol 11 (10) ◽  
pp. 4709
Author(s):  
Dacheng Huang ◽  
Jianrun Zhang

To explore the mechanical properties of the braided corrugated hose, the space curve parametric equation of the braided tube is deduced, specific to the structural features of the braided tube. On this basis, the equivalent braided tube model is proposed based on the same axial stiffness in order to improve the calculational efficiency. The geometric model and the Finite Element Model of the DN25 braided corrugated hose is established. The numerical simulation results are analyzed, and the distribution of the equivalent stress and frictional stress is discussed. The maximum equivalent stress of the braided corrugated hose occurs at the braided tube, with the value of 903MPa. The maximum equivalent stress of the bellows occurs at the area in contact with the braided tube, with the value of 314MPa. The maximum frictional stress between the bellows and the braided tube is 88.46MPa. The tensile experiment of the DN25 braided corrugated hose is performed. The simulation results are in good agreement with test data, with a maximum error of 9.4%, verifying the rationality of the model. The study is helpful to the research of the axial stiffness of the braided corrugated hose and provides the base for wear and life studies on the braided corrugated hose.


2015 ◽  
Vol 1096 ◽  
pp. 417-421
Author(s):  
Pei Luan Li ◽  
Zi Qian Huang

By the use of finite element method, this paper predicts the effects of the shapes of reinforcements with different ductility (Co) on the effective elastic response for WC-Co cemented carbide. This paper conducts a comparative study on the material properties obtained through theoretical model, numerical simulation and experimental observations. Simulation results indicate that the finite element method is more sophisticated than the theoretical prediction.


2014 ◽  
Vol 494-495 ◽  
pp. 725-728
Author(s):  
De Yong Cai ◽  
Fu Jun Liu ◽  
Gong Min Tang

The mechanical model of a new spring locking mechanism was established. The optimum spring parameters of the locking mechanism which meet the design requirements were provided by optimization. Using the finite element method, numerical simulation of working process of the locking mechanism was carried out. The rationality of optimization result was verified by simulation results of numerical simulation.


2013 ◽  
Vol 455 ◽  
pp. 517-521
Author(s):  
Yan Cheng ◽  
Li Wen Zhang

According to the structure optimization of combined extrusion die, using finite element method to establish parametric model and optimize the combination die, compare the results with the result of Lame formula to prove the correctnesss of finite element method; and adjust the structure of concave of die basing the optimal result, so as to reduce the stress concentration and the maximum equivalent stress value on the concave mould, and thus the life-span of the die is prolonged.


2010 ◽  
Vol 163-167 ◽  
pp. 2887-2890
Author(s):  
Yi Zhou Zhuang ◽  
Gong Kang Fu ◽  
Pang Jo Chun ◽  
Ji Hang Feng

A prototype of sensored bridge bearing was developed, fabricated, tested and planned to be applied in two bridge structures for sensing and monitoring of construction process and service condition. Besides, numerical modeling of the prototype was performed using the finite element method with ABAQUS, and meanwhile the testing results were calibrated. Numerical simulation results of the selected two bridge structures show that certain bearing reactions are sensitive to the interested behaviors and performances. This kind of sensored bearing is considered feasible for monitoring construction, damage scenario, and applied loads.


Author(s):  
Mohammed J. Ahamed ◽  
Mohammad A. Rahman

This paper presents the design of a MEMS-based active DEP (dielectrophoresis) cell filtration microchip for manipulating and separating biological cells. Depending on the dielectric constant and polarizability, biological cells are either attracted to or repelled from the electrodes inside a microfluidic channel. Through the optimization of electrode geometries using the finite element method (FEM), it was found that circular electrodes are capable of producing a more uniform and larger gradient of the squared electric field intensity compared to electrodes of other shapes, such as square, diamond, or triangle, FEM numerical simulation results were also used to determine 50μm as the optimal circular electrode diameter and 25μm as the optimal gap between electrodes.


Author(s):  
I.E. Adeyanov ◽  
◽  
M.Y. Alexandrov ◽  

The article presents a numerical calculation of the corrugated wall of a transformer under pressure. The permissible degree of evacuation of the wavy transformer tank is determined. The statement of the problem is formulated as follows: to determine the limit of the maximum allowable pressure during the evacuation of the tank with different geometrical dimensions of the corrugation. In this case, the maximum equivalent stress should not exceed the yield point and the walls of the corrugation should not close. Numerical calculation is carried out by the finite element method. This approach to calculating the behavior of a corrugated wall under pressure can be used to determine the maximum allowable internal pressure of the tank.


2020 ◽  
Vol 65 (1) ◽  
pp. 51-58
Author(s):  
Sava Ianici

The paper presents the results of research on the study of the elastic deformation of a flexible wheel from a double harmonic transmission, under the action of a cam wave generator. Knowing exactly how the flexible wheel is deformed is important in correctly establishing the geometric parameters of the wheels teeth, allowing a better understanding and appreciation of the specific conditions of harmonic gearings in the two stages of the transmission. The veracity of the results of this theoretical study on the calculation of elastic deformations and displacements of points located on the average fiber of the flexible wheel was subsequently verified and confirmed by numerical simulation of the flexible wheel, in the elastic field, using the finite element method from SolidWorks Simulation.


Sign in / Sign up

Export Citation Format

Share Document