α-SiAlON: Development and Machining Test on Gray Cast Iron

2008 ◽  
Vol 591-593 ◽  
pp. 565-571 ◽  
Author(s):  
Olivério Moreira Macedo Silva ◽  
Maria do Carmo de Andrade Nono ◽  
José Vitor C. Souza ◽  
M.V. Ribeiro

The α-SiAlON ceramic cutting tool insert is developed. Silicon nitride and additives powders are pressed and sintered in the form of cutting tool inserts at temperature of 1900 oC. The physics and mechanical properties of the inserts like green density, weight loss, relative density, hardness and fracture toughness are evaluated. Machining studies are conducted on grey cast iron workpiece to evaluate the performance of α-SiAlON ceramic cutting tool. In the paper the cutting tool used in higher speed showed an improvement in the tribological interaction between the cutting tools and the grey cast iron workpiece resulted in a significant reduction of flank wear and roughness, because of better accommodation and the presence of the graphite in gray cast iron. The above results are discussed in terms of their affect at machining parameters on gray cast iron.

2020 ◽  
Vol 299 ◽  
pp. 729-733
Author(s):  
A.A. Baron ◽  
L.V. Palatkina ◽  
I.L. Gonik

On the basis of approach to primary structure of gray cast iron as to an analog of the composite material, reinforced by discrete fibers, the quantitative contribution of dendritic crystals and the eutectic matrix to ultimate strength in tension is defined.


2009 ◽  
Vol 1 (3) ◽  
pp. 516-527 ◽  
Author(s):  
S. N. Pandya ◽  
S. K. Nath ◽  
G. P. Chaudhary

The surface of gray cast iron has been modified by Tungsten Inert Gas (TIG) process. Welding current of magnitude 25, 35, and 45 amperes have been used to melt the surface of gray cast iron. Microstructural characterization, hardness measurement and dry sliding wear tests have been performed on these modified surfaces. It has been observed that increase in welding current caused the microstructure of grey cast iron to be gradually refined. Graphite flakes segregated between interdendritic regions in the as-received grey cast iron have been completely replaced by a uniform distribution of finer graphite flakes in the matrix. Hardness has been found to increase with increase in welding current. Wear resistance of the gray cast iron also increased with increase in the welding current reaching maximum value for 45 amperes. The increased hardness and wear resistance of these modified surfaces have been explained on the basis of microstructural changes occurring at the surfaces of gray cast iron.  Keywords: Gray cast iron; Surface modification; TIG process; Dry sliding wear.© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.vli3.2577    J. Sci. Res. 1 (3), 516-527 (2009)


Author(s):  
A. A. Baron ◽  
L. V. Palatkina ◽  
S. V. Palatkin

For standard tension samples of gray cast iron, the possibility of using computer modeling to study factors affecting the morphology of dendritic crystals and the volumetric arrangement of defects of shrinkage origin is shown.


2010 ◽  
Vol 660-661 ◽  
pp. 106-111
Author(s):  
José Vitor C. Souza ◽  
Maria do Carmo de Andrade Nono ◽  
João Paulo Barros Machado ◽  
Olivério Moreira Macedo Silva ◽  
F.C.L. Melo ◽  
...  

Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron.


2013 ◽  
Vol 800 ◽  
pp. 221-224
Author(s):  
Jun Tao Zhang ◽  
Feng Zhang Ren

The increase of the strength of gray cast iron is mainly depended on alloying. However, with the improvement of strength, its processing performance will always decrease. So three different gray cast irons are studied in this experiment, including adding 0.1% Nb elements, adding 0.2% Nb elements and adding 0.3% Nb elements, to investigate the Nbs effect to the mechanical performance of gray cast iron, we adopt Dynamic Strain Amplifier to measure cutting force to evaluate processing performance, use Optical Microscope and Electron Microscopy observe each samples organization, explains the relationship between Nbs content and the mechanical and processing performance of gray cast iron from micro-level. Finally, we draw the conclusion: when the Nb comes to 0.3 percent, the appearance of E-type graphite and Nb carbide durum granular will greatly decrease its processing performance.


2010 ◽  
Vol 65 ◽  
pp. 45-49 ◽  
Author(s):  
Karolina Pereira Santos Tonello ◽  
Vânia Trombini Hernandes ◽  
Ana Helena Almeida Bressiani ◽  
José Carlos Bressiani

Machining processes require tool materials with properties such as high hardness at elevated temperature, high fracture toughness and chemical stability with the workpiece. Advances in science and industry, as well as the development of harder materials have permitted cutting tool technology to evolve. In cutting processes, the contribution of different wear mechanisms to total wear is related to the mechanical and chemical properties of the two materials in contact. The high temperatures at tool-workpiece contact zones often result in diffusion of material from the workpiece to the cutting tool. Diffusion experiments were carried out to understand wear mechanisms involved at cutting edges of ceramic tools and the influence of microstructure on diffusion without the interference of mechanical wear processes. The chemical stability was analyzed from static interaction couple experiments at 1100°C with ceramic composite materials and gray cast iron. To investigate the influence of grain size on diffusion, sub-micrometric and nanometric alumina based composites with NbC as the second phase were used. These experiments showed that the influence of grain size on diffusion and the relative inertness of the composites in the presence of gray cast iron.


1999 ◽  
Vol 107 (1246) ◽  
pp. 497-501
Author(s):  
Toshio OGASAWARA ◽  
Keizo OTANI ◽  
Yushi SHICHI ◽  
Junji YAMANAKA

Sign in / Sign up

Export Citation Format

Share Document