Advances in Multi- and Single-Wafer SiC Epitaxy for the Production and Development of Power Diodes

2008 ◽  
Vol 600-603 ◽  
pp. 95-98 ◽  
Author(s):  
Christian Hecht ◽  
Bernd Thomas ◽  
René A. Stein ◽  
Peter Friedrichs

In this paper, we present results of epitaxial layer deposition for production needs using our hot-wall CVD multi-wafer system VP2000HW from Epigress with a capability of processing 7×3” or 6×100mm wafers per run in a new 100mm setup. Intra-wafer and wafer-to-wafer homogeneities of doping and thickness for full-loaded 6×100mm and 7×3” runs will be shown. Results on Schottky Barrier Diodes (SBD) processed in the multi-wafer system will be given. Furthermore, we show results for n- and p-type SiC homoepitaxial growth on 3”, 4° off-oriented substrates using a single-wafer hot-wall reactor VP508GFR from Epigress for the development of PiN-diodes with blocking voltages above 6.5 kV. Characteristics of n- and p-type epilayers and doping memory effects are discussed. 6.5 kV PiN-diodes were fabricated and electrically characterized. Results on reverse blocking behaviour, forward characteristics and drift stability will be presented.

2008 ◽  
Vol 1069 ◽  
Author(s):  
Christian Hecht ◽  
Bernd Thomas ◽  
Rene Stein ◽  
Peter Friedrichs

ABSTRACTIn this paper, we present results of epitaxial layer deposition for production needs using our hot-wall CVD multi-wafer system VP2000HW from Epigress with a capability of processing 6×100mm wafers per run. Intra-wafer and wafer-to-wafer homogeneities of doping and thickness for full-loaded 6×100mm runs will be shown and compared to results of the former 7×3″ setup. The characteristic of the run-to-run reproducibility for the 6×100mm setup will be discussed. To demonstrate the suitability of the reactor for device production results on Schottky Barrier Diodes (SBD) processed in the multi-wafer system will be given. Furthermore, we show results for n- and p-type SiC homoepitaxial growth on 3″, 4° off-oriented substrates using a single-wafer hot-wall reactor VP508GFR from Epigress for the development of PiN-diodes with blocking voltages above 6.5 kV. Characteristics of n- and p-type epilayers and doping memory effects are discussed. 6.5 kV PiN-diodes were fabricated and electrically characterized. Results on reverse blocking behaviour, forward characteristics and drift stability will be presented.


2006 ◽  
Vol 911 ◽  
Author(s):  
Bernd Thomas ◽  
Christian Hecht ◽  
René Stein ◽  
Peter Friedrichs

AbstractIn this paper we present results of epitaxial layer deposition for production needs using our hot-wall CVD multi-wafer system. This equipment exhibits a capacity of 7x3” wafers per run and can be upgraded to a 6x4” setup. Characteristics of epilayers and reproducibility of the proc-esses are reported. Furthermore, we show recent results of p-type SiC homoepitaxial growth on 3” 4° off-oriented substrates using a single-wafer hot-wall CVD. The dependence of layer prop-erties on growth parameters, doping and thickness uniformity as well as doping memory effects are discussed. For the characterization of epitaxially grown pn-junctions first research grade pin-diodes were fabricated. The p-type emitters were either deposited in the same growth run to-gether with the n-type buffer and drift layers (continuous growth) or the n- and p-layers were grown in two different growth runs (separate growth).


2002 ◽  
Vol 742 ◽  
Author(s):  
T. Kimoto ◽  
K. Hashimoto ◽  
K. Fujihira ◽  
K. Danno ◽  
S. Nakamura ◽  
...  

ABSTRACTHomoepitaxial growth, impurity doping, and diode fabrication on 4H-SiC(11–20) and (03–38) have been investigated. Although the efficiency of nitrogen incorporation is higher on the non-standard faces than on (0001), a low background doping concentration of 2∼3×1014 cm-3 can be achieved. On these faces, boron and aluminum are less effectively incorporated, compared to the growth on off-axis (0001). 4H-SiC(11–20) epilayers are micropipe-free, as expected. More interestingly, almost perfect micropipe closing has been realized in 4H-SiC (03–38) epitaxial growth. Ni/4H-SiC(11–20) and (03–38) Schottky barrier diodes showed promising characteritics of 3.36 kV-24 mΩcm2 and 3.28 kV–22 mΩcm2, respectively. The breakdown voltage of 4H-SiC(03–38) Schottky barrier diodes was significantly improved from 1 kV to above 2.5 kV by micropipe closing.


2008 ◽  
Vol 22 (14) ◽  
pp. 2309-2319 ◽  
Author(s):  
K. ERTURK ◽  
M. C. HACIISMAILOGLU ◽  
Y. BEKTORE ◽  
M. AHMETOGLU

The electrical characteristics of Cr / p – Si (100) Schottky barrier diodes have been measured in the temperature range of 100–300 K. The I-V analysis based on thermionic emission (TE) theory has revealed an abnormal decrease of apparent barrier height and increase of ideality factor at low temperature. The conventional Richardson plot exhibits non-linearity below 200 K with the linear portion corresponding to activation energy 0.304 eV and Richardson constant (A*) value of 5.41×10-3 Acm-2 K -2 is determined from the intercept at the ordinate of this experimental plot, which is much lower than the known value of 32 Acm-2 K -2 for p-type Si . It is demonstrated that these anomalies result due to the barrier height inhomogeneities prevailing at the metal-semiconductor interface. Hence, it has been concluded that the temperature dependence of the I-V characteristics of the Cr/p – Si Schottky barrier diode can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights. Furthermore, the value of the Richardson constant found is much closer than that obtained without considering the inhomogeneous barrier heights.


1999 ◽  
Vol 572 ◽  
Author(s):  
Q. Zhang ◽  
V. Madangarli ◽  
S. Soloviev ◽  
T. S. Sudarshan

ABSTRACTP-type 6H SiC Schottky barrier diodes with good rectifying characteristics upto breakdown voltage as high as 1000V have been successfully fabricated using metal-overlap over a thick oxide layer (∼ 6000 Å) as edge termination and Al as the barrier metal. The influence of the oxide layer edge termination in improving the reverse breakdown voltage as well as the forward current – voltage characteristics is presented. The terminated Schottky diodes indicate a factor of two higher breakdown voltage and 2–3 times larger forward current densities than those without edge termination. The specific series resistance of the unterminated diodes was ∼228 mΩ-cm2, while that of the terminated diodes was ∼84 mΩ-cm2.


2005 ◽  
Vol 483-485 ◽  
pp. 1025-1028 ◽  
Author(s):  
Nikita B. Strokan ◽  
Alexander M. Ivanov ◽  
N.S. Savkina ◽  
Alexander A. Lebedev ◽  
Vitalii V. Kozlovski ◽  
...  

Nuclear-particle detectors based on SiC with a structure composed of an n+-type substrate, a p-type epitaxial layer, and a Schottky barrier are studied. Structures with a ~10-µm-thick 6H-SiC layer exhibit transistor properties, whereas those with a ~30-µm-thick 4H-SiC layer exhibit diode properties. It is established that a more than tenfold amplification of the signal is observed in the transistor-type structure. The amplification is retained after irradiation with 8-MeV protons with a dose of at least 5 × 10 13 cm –2 ; in this case, the resolution is ≤ 10%. Amplification of the signal was not observed in the structures of diode type. However, there were diode-type detectors with a resolution of ≈ 3%, which is acceptable for a number of applications, even after irradiation with the highest dose of 2 × 10 14 cm.


2007 ◽  
Vol 43 (17) ◽  
pp. 953 ◽  
Author(s):  
M. Miyoshi ◽  
Y. Kuraoka ◽  
K. Asai ◽  
T. Shibata ◽  
M. Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document