Ti-Mg Alloy Powder Synthesis via Mechanochemical Reduction of TiO2 by Elemental Magnesium

2009 ◽  
Vol 618-619 ◽  
pp. 517-520 ◽  
Author(s):  
Tafadzwa Mushove ◽  
Hilda Kundai Chikwanda ◽  
Christopher Machio ◽  
Sehliselo Ndlovu

This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO2 and Mg powders. TiO2 was mixed with elemental Mg according to a nominal stoichiometric composition with 15% excess Mg. The powder mixture was mechanically milled in a Simoloyer high energy ball mill for 5 different durations. Contamination was minimised by processing under a high purity argon atmosphere. Changes in phase composition were studied by XRD techniques. TiO2 was reduced, as shown by the formation of MgO. The extent of the reduction, as indicated by XRD peaks’ intensities, increased with milling time. XRD spectra of powders milled for 24 hours revealed virtual disappearance of TiO2 peaks and there was no evidence of elemental Ti. The lattice parameter of the resulting Ti metal was larger than that of elemental Ti. This implies that the Ti was alloyed with free Mg to produce Ti-Mg alloy powder. The lattice parameter increased with increasing milling time.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Hadi Jahangiri ◽  
Sultan Sönmez ◽  
M. Lütfi Öveçoğlu

The effects of milling atmosphere and mechanical alloying (MA) duration on the effective lattice parameter, crystallite size, lattice strain, and amorphization rate of the W-0.5 wt.% Ti powders were investigated. W-0.5 wt.% Ti powders were mechanically alloyed (MA’d) for 10 h and 20 h in a high energy ball mill. Moreover, morphology of the powders for various MA was analyzed using SEM microscopy. Their powder density was also measured by helium pycnometer. The dry milled agglomerated powders have spherical particle, while wet milled powders have layered morphology. Milling media and increasing of milling time significantly reduce the crystallite size. The smallest crystallite size is 4.93 nm which belonged to the dry milled powders measured by Lorentzian method after 20 hours’ MA. However, after 20 hours, MA’d powders show the biggest crystallite size, as big as 57.07 nm, measured with the same method in ethanol.


2018 ◽  
Vol 54 ◽  
pp. 136-145
Author(s):  
A. El Mohri ◽  
M. Zergoug ◽  
K. Taibi ◽  
M. Azzaz

Nanocrystalline Fe90Mg10 alloy samples were prepared by mechanical alloying process using planetary high energy ball mill. The prepared powders were characterized using differential thermal analysis (DTA), X-ray diffraction technique (XRD) at high temperature, transmission electron microscopy (TEM), and the vibrating sample magnetometer (VSM). Obtained results are discussed according to milling time. XRD at high temperature results also indicated that when the milling time increases, the lattice parameter and the mean level of grain size increase, whereas the microstrains decrease. The result of the observation by the TEM of the Fe-Mg powders prepared in different milling time, coercive fields derived and Saturation magnetization derived from the hysteresis curves in high temperature are discussed as a function of milling time.


2018 ◽  
Vol 27 (5-6) ◽  
Author(s):  
Pardeep Sharma

AbstractIn the present research work nickel (Ni) and titanium (Ti) elemental powder with an ostensible composition of 50% of each by weight were mechanically alloyed in a planetary high energy ball mill in diverse milling circumstances (10, 20, 30 and 60 h). The inspection exposed that increasing milling time leads to a reduction in crystallite size, and after 60 h of milling, the Ti dissolved in the Ni lattice and the NiTi (B2) phase was obtained. The lattice strain of ball milled mixtures augmented from 0.15 to 0.45 at 60 h milling. With increase in milling time the morphology of pre-alloyed powder changed from lamella to globular. Annealing of as-milled powders at 1100 K for 800 s led to the formation of NiTi (B19′), grain growth and the release of internal strain. The result indicated that this technique is a powerful and highly productive process for preparing NiTi intermetallic compounds with a nano-crystalline structure and appropriate morphology.


2012 ◽  
Vol 05 ◽  
pp. 496-501 ◽  
Author(s):  
S. SHEIBANI ◽  
S. HESHMATI-MANESH ◽  
A. ATAIE

In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr . The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.


2015 ◽  
Vol 24 (5-6) ◽  
pp. 207-212 ◽  
Author(s):  
David Florián-Algarín ◽  
Raúl Marrero ◽  
Alexandra Padilla ◽  
Oscar Marcelo Suárez

AbstractThis study hinges on the feasibility of strengthening Al and Al-Mg wires by adding Al nanocomposite pellets containing MgB2 nanoparticles into the melt upon fabrication. These MgB2 nanoparticles were obtained by fragmentation using a high-energy ball mill, and were, afterward, mechanically alloyed with pure aluminum. The resulting MgB2/Al nanocomposite pellets were sintered at 260°C to be subsequently added into molten aluminum and an Al-Mg alloy melt. Cold rolling intercalated with stepwise annealing allowed the fabrication of 1 mm diameter wires with a final area reduction of 96%. Mechanical and physical properties of the treated wire specimens were compared to those of similarly processed pure aluminum wire. The ultimate tensile strength of the treated wires increased approximately double fold with respect to untreated wires at the expense of some loss in electrical conductivity.


2016 ◽  
Vol 38 ◽  
pp. 107-113
Author(s):  
Maya Radune ◽  
Michael Zinigrad ◽  
Nachum Frage

Taguchi’s method was applied to investigate the effect of the main HEBM parameters: milling time (MT), ball to powder weight ratio (BPWR) and milling speed (MS) on the dissolved AlN fraction in TiN. The settings of HEBM parameters were determined by using the orthogonal experiments array (OA). The as-received and milled powders were characterized by X-ray diffraction (XRD). The optimum milling parameter combination was determined by using the analysis of signal-to-noise (S/N) ratio. According to the analysis of variance (ANOVA) the milling speed is the most effective parameter and the optimal conditions for powder synthesis are: MT 20h, MS 600rpm, BPWR 50:1. The result of the experiment conducted under optimal conditions (AlN was completely dissolved during experiment) confirmed the conclusions of the statistical analysis.


2003 ◽  
Vol 788 ◽  
Author(s):  
Shashishekar Basavaraju ◽  
Ian Baker

ABSTRACTNanocrystalline stoichiometric FeCo powders were prepared by mechanically alloying elemental Fe and Co powders using a high-energy ball mill. The microstructural evolution was studied as a function of milling time and subsequent annealing using X-ray diffractometry and differential scanning calorimetry. The magnetic behavior of the specimens was characterized using a vibrating sample magnetometer and a magnetic force microscope. A reduction in grain size coupled with an increase in coercivity was observed as function of milling time. The smallest grain size of 4 nm, which exhibited a coercivity of 122 Oe and magnetization of 2 T at room temperature, was obtained after 240 h of milling. The reduction in grain size during milling was not accompanied by enhanced soft magnetic properties.


2017 ◽  
Vol 47 ◽  
pp. 79-88 ◽  
Author(s):  
Z. Hamlati ◽  
W. Laslouni ◽  
Mohammed Azzaz ◽  
M. Zergoug ◽  
D. Martínez-Blanco ◽  
...  

Ternary Fe72Al26Sn2 and Cu70Fe18Co12 alloys were obtained by mechanical alloying of pure Fe, Al, Sn, Cu and Co powders using a high energy ball mill. X-ray diffraction and electron microscopy supported by magnetic measurements have been applied to follow changes in the microstructure, phase composition and magnetic properties in dependence on milling time. With the increase of milling time all Al and Sn atoms dissolved in the bcc Fe and the final product of the MA process was the nanocrystalline Fe (Al, Sn) solid solution in a metastable state with a large amount of defects and mean crystallite size of 5 nm. However, the obtained crystallite size value is about 10 nm for the ball milled Cu70Fe18Co12 powders. The electron microscope observations show the morphology of powder particles. Magnetic properties of the nanocrystalline mechanically alloyed FeAlSn and CuFeCo were also investigated and were related to the microstructural changes.


2013 ◽  
Vol 829 ◽  
pp. 747-751 ◽  
Author(s):  
Sedigheh Rashidi ◽  
Abolghasem Ataie

In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by intensive mechanical alloying of CoCO3 and α-Fe2O3 powder using a planetary high energy ball mill in air without any subsequent heat treatment. Effects of milling time on the phase composition, morphology and magnetic properties of the powders were evaluated using XRD, FESEM and VSM techniques, respectively. XRD results indicated that single phase CoFe2O4 nanoparticles with a mean crystallite size of 15 nm were synthesized after 25 hours of mechanical milling. FESEM images confirmed the formation of uniform nanoparticles and showed that the mean particle size of the milling products was decreased from 51 to 25 nm by increasing the milling time from 20 to 30 hours. VSM measurements of the sample milled for 25 hours revealed a saturation magnetization (Ms) of 52.19 emu/g and coercivity (Hc) of 831.95 Oe, which were higher than those of 20 hours milled sample.


2011 ◽  
Vol 324 ◽  
pp. 141-144 ◽  
Author(s):  
Ahmad Al Mohammad ◽  
Fatemh Maksoud

The relevance of sensor response to NO2 with the nanostructure of the sensing body was investigated for thick-film devices using ZnO(WO3) nanocomposites. When the nanocomposites was prepared from constituent oxides by milling in a high energy ball mill for various spans of time (1–21 h), the sensor response to 100 ppm NO2, defined as the ratio of the electrical resistance in air to that in the sample gas, was found to reach a maximum as large as about 80 at 21 h of high energy ball-milling (HEBM). XRD and SEM observations of the granular state and pore size distribution analyses indicated that increasing HEBM time gave rise especially to an increase in the volume of pores in the pore size range of 20–35 nm. It is suggested that such a change in nanostructure is responsible for the marked promotion of the response to NO2. For comparison, the response to NO2 of ZnO or WO3 nanoparticles prepared by an HEBM method was also presented. In this case, the response to NO2 can be 10 times larger at HEBM for 21 h.


Sign in / Sign up

Export Citation Format

Share Document