Effect of Ti3SiC2 Content on the Property of a Warm Compacted Cu-Ti3SiC2 Composite

2009 ◽  
Vol 628-629 ◽  
pp. 471-476 ◽  
Author(s):  
Jun Jun Zheng ◽  
Tungwai Leo Ngai ◽  
Chang Xu Hu ◽  
G.R. Pan ◽  
Yuan Yuan Li

A simple and economical powder metallurgy forming process known as warm compaction was employed to fabricate a Cu-Ti3SiC2 particulate reinforced copper matrix composite for electro-friction purpose. Copper matrix composites reinforced with 5, 10, 15 mass% Cu coated Ti3SiC2 particulate were prepared by compacting the powder mixture with a pressure of 700 MPa at 145°C, and then sintered at 1000°C under cracked ammonia atmosphere for 60 minutes. Their density, hardness, tensile strength, elongation and electrical resistivity were studied. Result showed that within a reasonable limit, the addition of Ti3SiC2 particulate can increase the hardness of the composite without losing much of electrical conductivity. Sintered composite with 5 mass% Ti3SiC2 has an ultimate tensile strength of 182 MPa with an elongation of 10%, a hardness of HB 68 and a resistivity of 8.0×10-8Ωm. Compared with the samples using uncoated Ti3SiC2 particulate, the resistivity of the samples prepared by using the Cu coated Ti3SiC2 particulate have a better conductivity, but have a slightly lower mechanical property.

2006 ◽  
Vol 532-533 ◽  
pp. 596-599 ◽  
Author(s):  
Tungwai Leo Ngai ◽  
Yuan Yuan Li ◽  
Zhao Yao Zhou

Increasing density is the best way to increase the performance of powder metallurgy materials. Conventional powder metallurgy processing can produce copper green compacts with density less than 8.3g/cm3 (a relative density of 93%). Performances of these conventionally compacted materials are substantially lower than their full density counterparts. Warm compaction, which is a simple and economical forming process to prepare high density powder metallurgy parts or materials, was employed to develop a Ti3SiC2 particulate reinforced copper matrix composite with high strength, high electrical conductivity and good tribological behaviors. Ti3SiC2 particulate reinforced copper matrix composites, with 1.25, 2.5 and 5 mass% Ti3SiC2 were prepared by compacting powder with a pressure of 700 MPa at 145°C, then sintered at 1000°C under cracked ammonia atmosphere for 60 minutes. Their density, electrical conductivity and ultimate tensile strength decrease with the increase in particulate concentration, while hardness increases with the increase in particulate concentration. A small addition of Ti3SiC2 particulate can increase the hardness of the composite without losing much of electrical conductivity. The composite containing 1.25 mass% Ti3SiC2 has an ultimate tensile strength of 158 MPa, a hardness of HB 58, and an electrical resistivity of 3.91 x 10-8 Ω.m.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1027-1032

Nano technology has fascinated the attention of numerous material scientists and design engineers. The nano scaled particulates incorporation exhibit many attractive and special properties. The inclusion of nano particulates into the copper matrix might augments the hardness, ultimate tensile strength and yield strength significantly increases, maintaining the ductility. In this paper, the nano Al2O3 reinforced copper - 5%tin- metal matrix composites were manufactured by stir casting technique and reinforcement is varied from 0wt. % to 9wt. % in ventures of 3wt. %. The nano composites are characterized in terms of their mechanical and wear properties. Results revealed that, the distribution of nano Al2O3 particulates is fairly uniform in copper - 5%tin metal matrix. As the level of reinforcement increases, hardness, yield strength, ultimate tensile strength, and wear resistance of the copper - 5%tin – nano Al2O3 metal matrix composites increases. The developed nano metal matrix composites may be an alternative material for bearing applications


2014 ◽  
Vol 21 (1) ◽  
pp. 29-38
Author(s):  
Oscar Marcelo Suárez ◽  
Natalia Cortes-Urrego ◽  
Sujeily Soto-Medina ◽  
Deborah Marty-Flores

AbstractAn aluminum-copper matrix composite reinforced with aluminum diboride particles was studied at high temperature via thermomechanometry experiments. The matrix contained 2 wt% Cu, whereas the amount of boron forming AlB2 ranged from 0 to 4 wt%, i.e., 0 to 8.31 vol% of diboride particles. In the first segment of the research, we demonstrated that larger amounts of AlB2 particles raised the composite hardness even at 300°C. To assess the material creep behavior, another set of specimens were tested under 1 N compression at 400°C and 500°C for 12 h. Higher levels of AlB2 allowed the composites to withstand compression creep deformations at those temperatures. By using existing creep models developed for metal matrix composites we were able to determine that viscous slip deformation was the dominant deformation mechanism for the temperatures and stress levels used in our experiments. Additionally, the computed creep activation energy for these aluminum matrix composites were found comparable to the energies reported for other similar materials, for instance, Al/SiCp composites.


2010 ◽  
Vol 297-301 ◽  
pp. 820-825
Author(s):  
Naďa Beronská ◽  
Pavol Štefánik ◽  
Karol Iždinský

Copper matrix composite with pure copper matrix reinforced with high modulus carbon fibres Thornel K 1100 was prepared by gas pressure infiltration technique. As-received composite was subjected to thermal expansion and thermal conductivity measurements in longitudinal and transversal directions. Large anisotropy of properties as well as surprisingly good structural stability has been observed. The mean coefficients of thermal expansion as low as 0.8 x 10-6 K-1 in longitudinal and as high as 23.5 x 10-6 K-1 in transversal directions were determined, the thermal conductivities as high as 650 Wm-1K-1 in longitudinal direction and as low as 60.7 Wm-1K-1in transversal directions were measured.


2007 ◽  
Vol 534-536 ◽  
pp. 929-932 ◽  
Author(s):  
Tungwai Leo Ngai ◽  
Zhi Yu Xiao ◽  
Yuan Biao Wu ◽  
Yuan Yuan Li

Conventional powder metallurgy processing can produce copper green compacts with density less than 8.3 g/cm3 (a relative density of 93%). Performances of these conventionally compacted materials are substantially lower than their full density counterparts. Warm compaction, which is a simple and economical forming process to prepare high density powder metallurgy parts or materials, was employed to develop a Ti3SiC2 particulate reinforced copper matrix composite with high density, high electrical conductivity and high strength. In order to clarify the warm compaction behaviors of copper powder and to optimize the warm compaction parameters, effects of lubricant concentration and compaction pressure on the green density of the copper compacts were studied. Copper compact with a green density of 8.57 g/cm3 can be obtained by compacting Cu powder with a pressure of 700 MPa at 145°C. After sintered at 1000°C under cracked ammonia atmosphere for 60 minutes, density of the sintered compact reached 8.83 g/cm3 (a relative density of 98.6%). Based on these fabrication parameters a Ti3SiC2 particulate reinforced copper matrix composite was prepared. Its density, electrical conductivity, ultimate tensile strength, elongation percentage and tribological behaviors were studied.


2011 ◽  
Vol 183-185 ◽  
pp. 1586-1590
Author(s):  
Wei Ping Liu

Copper slag was used to prepare copper powder by way of slurry electrolysis, and the copper powder was used to fabricate copper matrix composite materials reinforced with chemical plating surface modified alumina particulates. Alumina particulates were pretreated in ultrasonic field by chemical copper plating in order to make alumina particulates covered with a layer of copper film and form Al2O3/Cu composite powders. Copper matrix composite materials strengthened with alumina particulates were synthesized by means of pressure molding and sintering. Microstructure of copper matrix composites was researched by means of SEM. SEM analysis shows that alumina particulates distribute in the copper-based body evenly, and combine with copper closely. The effects of sintering temperature, pressure and alumina content on the compactness and hardness of copper matrix composites were studied by orthogonal tests. The compactness of composites increases with the sintering temperature and pressure increasing, and decreases with the alumina content increasing. The hardness of composite materials increases with the sintering temperature, pressure and alumina particulates increasing.


Sign in / Sign up

Export Citation Format

Share Document