Growth Defects and Surface Roughness in TiN-Coated Tool Steel at Various N2 Gas Flow Rates Using Cathodic Arc PVD Technique

2010 ◽  
Vol 636-637 ◽  
pp. 965-970
Author(s):  
Mubarak Ali ◽  
E. Hamzah ◽  
I.A. Qazi ◽  
M.R.M. Toff

In the present study, titanium nitride coatings on tool steel were deposited using cathodic arc physical vapour deposition technique. We studied and discussed the effect of various nitrogen gas flow rate on the surface properties of TiN-coated steel. The coating properties investigated in this work include the surface morphology, surface roughness, line profile and fractal dimension analyses using atomic force microscope. Minimum values for surface roughness, line profile and fractal dimension analyses were recorded at nitrogen gas flow rate of 200 sccm. This is mainly because of the reduction in macro-droplets and minimization of the growth defects, usually produced during etching and deposition stages. Critical limit of nitrogen gas flow rate in TiN coatings were identified and considered an important aspect to understand the performance of TiN PVD-coated steel.

2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Arman Shah ◽  
S. Izman ◽  
M. A. Hassan

Cathodic arc physical vapor deposition (CAPVD) is one of the promising techniques that have a potential to coat titanium nitride (TiN) on biomedical implants due to its good adhesion and high evaporation rate. However, this method emits microdroplets which have the possible detrimental effect on the coating performance. Past studies indicated that micro droplets can be controlled through proper deposition parameters. In the present work, an attempt was made to study the effect of nitrogen gas flow rates (100 to 300 sccm) on TiN coating of the Ti-13Zr-13Nb biomedical alloy. Scanning electron microscopy (SEM) was used to evaluate surface morphology and coating thickness while crystal phase of the coated substrates was determined using X-Ray Diffraction (XRD). Image analysis software was employed to quantify microdroplets counts. Results show that higher nitrogen gas flow rate able to decrease a significant amount of microdroplets and concurrently increase the thickness of TiN coating. A mixed crystal planes of (111) and (220) are obtained on the coated substrates at this setting which exhibits denser structure with higher adhesion strength as compared to substrates coated at the lower N2 gas flow rate.


2005 ◽  
Vol 12 (04) ◽  
pp. 631-643 ◽  
Author(s):  
ALI MUBARAK ◽  
ESAH BINTI HAMZAH ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
ABDUL HAKIM BIN HASHIM

Cathodic arc evaporation (CAE) is a widely-used technique for generating highly ionized plasma from which hard and wear resistant physical vapor deposition (PVD) coatings can be deposited. A major drawback of this technique is the emission of micrometer-sized droplets of cathode material from the arc spot, which are commonly referred to as "macroparticles." In present study, titanium nitride ( TiN ) coatings on high-speed steel (HSS) coupons were produced with a cathodic arc evaporation technique. We studied and discussed the effect of various nitrogen gas flow rates on microstructural and mechanical properties of TiN -coated HSS coupons. The coating properties investigated in this work included the surface morphology, thickness of deposited coating, adhesion between the coating and substrate, coating composition, coating crystallography, hardness and surface characterization using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX), X-ray diffraction (XRD) with glazing incidence angle (GIA) technique, scratch tester, hardness testing machine, surface roughness tester, and atomic force microscope (AFM). An increase in the nitrogen gas flow rate showed decrease in the formation of macro-droplets in CAE PVD technique. During XRD-GIA studies, it was observed that by increasing the nitrogen gas flow rate, the main peak [1,1,1] shifted toward the lower angular position. Surface roughness decreased with an increase in nitrogen gas flow rate but was higher than the uncoated polished sample. Microhardness of TiN -coated HSS coupons showed more than two times increase in hardness than the uncoated one. Scratch tester results showed good adhesion between the coating material and substrate. Considerable improvement in the properties of TiN -deposited thin films was achieved by the strict control of all operational steps.


2007 ◽  
Vol 14 (05) ◽  
pp. 1007-1013 ◽  
Author(s):  
ESAH HAMZAH ◽  
ALI OURDJINI ◽  
MUBARAK ALI ◽  
PARVEZ AKHTER ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
...  

In the present study, the effect of various N 2 gas flow rates on friction coefficient and surface roughness of TiN -coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N 2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N 2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N 2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.


MRS Advances ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 165-170
Author(s):  
Shumpei Ogawa ◽  
Tatsuya Kuroda ◽  
Ryuga Koike ◽  
Hiroki Ishizaki

AbstractRecently, Plasma Assisted Atomic Layer Deposition Technique will easily control the thickness and the composition of semiconductor films. The radical generated by using the plasma techniques, gave the decrease of the defect into the semiconductor films. In this investigation, the relationship between microwave plasma power, nitrogen gas flow rate and concentration of generated nitrogen radical, was evaluated. At the first, Plasma emission spectrum at microwave plasma power (0 to 400W) was measured using a mixed 200sccm argon gas and 10sccm nitrogen gas. Next, the plasma emission spectrum was measured in the mixing of nitrogen gas flow rate (0 to 40sccm) with 200sccm argon gas flow rate. At that time, the microwave plasma power was set to 200W. Nitrogen radical spectrum were identified from all the emission spectrum, and the nitrogen radical intensity was calculated. As a result, the nitrogen radical intensity became the largest at 200sccm argon gas flow rate and 10sccm nitrogen gas flow rate. In addition, the nitrogen radical intensity increased in proportion to the microwave plasma power. The concentration of generated nitrogen radical could be controlled by changing the microwave plasma power and the nitrogen gas flow rate. Mentioned above, nitride thin films will be obtained on Si Substrates by microwave generated remote plasma assisted atomic layer deposition technique.


2015 ◽  
Vol 28 ◽  
pp. 37-44 ◽  
Author(s):  
Ling Wei Low ◽  
Tjoon Tow Teng ◽  
Abbas F.M. Alkarkhi ◽  
Norhashimah Morad ◽  
Baharin Azahari

2019 ◽  
Vol 27 (07) ◽  
pp. 1950183
Author(s):  
AREZOO MOSHABAKI ◽  
ERFAN KADIVAR ◽  
ALIREZA FIROOZIFAR

Indium tin oxide (ITO) thin films have been deposited on glass substrate by DC magnetron sputtering in the presence and absence of oxygen gas flux. Subsequently, some of the samples have been annealed in vacuum or air oven at [Formula: see text]C for 20[Formula: see text]min. The optical, surface morphology and electrical characteristics have been examined by spectrophotometry, atomic force microscope, field emission scanning electron microscopy, four-point probe and Hall effect measurements as a function of argon gas flux, film thickness, deposition rate and substrate temperature. Experimental results indicate that the surface roughness increases by decreasing the argon gas flow rate and deposition rate. The result revealed that the lowest surface roughness of 1.07[Formula: see text]nm is achieved at zero oxygen gas flux, argon gas flow 20[Formula: see text]sccm and deposition rate [Formula: see text] Å/s. We have found that the maximum value of merit figure is related to the argon gas flow rate 30[Formula: see text]sccm. In order to obtain a very smooth surface, finally, the ITO thin films have been processed with alumina polishing solution by ultrasonic method. Our experimental results indicate that surface roughness decreases and merit figure increases after polishing process.


Sign in / Sign up

Export Citation Format

Share Document