INFLUENCE OF NITROGEN FLOW RATE ON FRICTION COEFFICIENT AND SURFACE ROUGHNESS OF TiN COATINGS DEPOSITED ON TOOL STEEL USING ARC METHOD

2007 ◽  
Vol 14 (05) ◽  
pp. 1007-1013 ◽  
Author(s):  
ESAH HAMZAH ◽  
ALI OURDJINI ◽  
MUBARAK ALI ◽  
PARVEZ AKHTER ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
...  

In the present study, the effect of various N 2 gas flow rates on friction coefficient and surface roughness of TiN -coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N 2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N 2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N 2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 332 ◽  
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

Thin hard coatings are widely known as key elements in many industrial fields, from equipment for metal machining to dental implants and orthopedic prosthesis. When it comes to machining and cutting tools, thin hard coatings are crucial for decreasing the coefficient of friction (COF) and for protecting tools against oxidation. The aim of this work was to evaluate the tribological performance of two commercially available thin hard coatings deposited by physical vapor deposition (PVD) on a high speed tool steel (S600) under extreme working conditions. For this purpose, pin-on-disc wear tests were carried out either at room temperature (293 K) or at high temperature (873 K) against alumina (Al2O3) balls. Two thin hard nitrogen-rich coatings were considered: a multilayer AlTiCrN and a superlattice (nanolayered) CrN/NbN. The surface and microstructure characterization were performed by optical profilometry, field-emission gun scanning electron microscopy (FEGSEM), and energy dispersive spectroscopy (EDS).


2012 ◽  
Vol 576 ◽  
pp. 594-597 ◽  
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Dewan Muhammad Nuruzzaman

A hot filament thermal chemical vapor deposition (CVD) reactor was used to deposit solid thin films on stainless steel 316 (SS 316) substrates at different flow rates of natural gas. The variation of thin film deposition rate with the variation of gas flow rate has been investigated experimentally. During experiment, the effect of gap between activation heater and substrate on the deposition rate has also been observed. Results show that deposition rate on SS 316 increases with the increase in gas flow rate. It is also observed that deposition rate increases with the decrease in gap between activation heater and substrate within the observed range. In addition, friction coefficient and wear rate of SS 316 sliding against SS 304 under different normal loads are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate are obtained after deposition as compared to that of before deposition.


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Arman Shah ◽  
S. Izman ◽  
M. A. Hassan

Cathodic arc physical vapor deposition (CAPVD) is one of the promising techniques that have a potential to coat titanium nitride (TiN) on biomedical implants due to its good adhesion and high evaporation rate. However, this method emits microdroplets which have the possible detrimental effect on the coating performance. Past studies indicated that micro droplets can be controlled through proper deposition parameters. In the present work, an attempt was made to study the effect of nitrogen gas flow rates (100 to 300 sccm) on TiN coating of the Ti-13Zr-13Nb biomedical alloy. Scanning electron microscopy (SEM) was used to evaluate surface morphology and coating thickness while crystal phase of the coated substrates was determined using X-Ray Diffraction (XRD). Image analysis software was employed to quantify microdroplets counts. Results show that higher nitrogen gas flow rate able to decrease a significant amount of microdroplets and concurrently increase the thickness of TiN coating. A mixed crystal planes of (111) and (220) are obtained on the coated substrates at this setting which exhibits denser structure with higher adhesion strength as compared to substrates coated at the lower N2 gas flow rate.


2019 ◽  
Vol 27 (07) ◽  
pp. 1950183
Author(s):  
AREZOO MOSHABAKI ◽  
ERFAN KADIVAR ◽  
ALIREZA FIROOZIFAR

Indium tin oxide (ITO) thin films have been deposited on glass substrate by DC magnetron sputtering in the presence and absence of oxygen gas flux. Subsequently, some of the samples have been annealed in vacuum or air oven at [Formula: see text]C for 20[Formula: see text]min. The optical, surface morphology and electrical characteristics have been examined by spectrophotometry, atomic force microscope, field emission scanning electron microscopy, four-point probe and Hall effect measurements as a function of argon gas flux, film thickness, deposition rate and substrate temperature. Experimental results indicate that the surface roughness increases by decreasing the argon gas flow rate and deposition rate. The result revealed that the lowest surface roughness of 1.07[Formula: see text]nm is achieved at zero oxygen gas flux, argon gas flow 20[Formula: see text]sccm and deposition rate [Formula: see text] Å/s. We have found that the maximum value of merit figure is related to the argon gas flow rate 30[Formula: see text]sccm. In order to obtain a very smooth surface, finally, the ITO thin films have been processed with alumina polishing solution by ultrasonic method. Our experimental results indicate that surface roughness decreases and merit figure increases after polishing process.


2010 ◽  
Vol 636-637 ◽  
pp. 965-970
Author(s):  
Mubarak Ali ◽  
E. Hamzah ◽  
I.A. Qazi ◽  
M.R.M. Toff

In the present study, titanium nitride coatings on tool steel were deposited using cathodic arc physical vapour deposition technique. We studied and discussed the effect of various nitrogen gas flow rate on the surface properties of TiN-coated steel. The coating properties investigated in this work include the surface morphology, surface roughness, line profile and fractal dimension analyses using atomic force microscope. Minimum values for surface roughness, line profile and fractal dimension analyses were recorded at nitrogen gas flow rate of 200 sccm. This is mainly because of the reduction in macro-droplets and minimization of the growth defects, usually produced during etching and deposition stages. Critical limit of nitrogen gas flow rate in TiN coatings were identified and considered an important aspect to understand the performance of TiN PVD-coated steel.


2005 ◽  
Vol 12 (04) ◽  
pp. 631-643 ◽  
Author(s):  
ALI MUBARAK ◽  
ESAH BINTI HAMZAH ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
ABDUL HAKIM BIN HASHIM

Cathodic arc evaporation (CAE) is a widely-used technique for generating highly ionized plasma from which hard and wear resistant physical vapor deposition (PVD) coatings can be deposited. A major drawback of this technique is the emission of micrometer-sized droplets of cathode material from the arc spot, which are commonly referred to as "macroparticles." In present study, titanium nitride ( TiN ) coatings on high-speed steel (HSS) coupons were produced with a cathodic arc evaporation technique. We studied and discussed the effect of various nitrogen gas flow rates on microstructural and mechanical properties of TiN -coated HSS coupons. The coating properties investigated in this work included the surface morphology, thickness of deposited coating, adhesion between the coating and substrate, coating composition, coating crystallography, hardness and surface characterization using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX), X-ray diffraction (XRD) with glazing incidence angle (GIA) technique, scratch tester, hardness testing machine, surface roughness tester, and atomic force microscope (AFM). An increase in the nitrogen gas flow rate showed decrease in the formation of macro-droplets in CAE PVD technique. During XRD-GIA studies, it was observed that by increasing the nitrogen gas flow rate, the main peak [1,1,1] shifted toward the lower angular position. Surface roughness decreased with an increase in nitrogen gas flow rate but was higher than the uncoated polished sample. Microhardness of TiN -coated HSS coupons showed more than two times increase in hardness than the uncoated one. Scratch tester results showed good adhesion between the coating material and substrate. Considerable improvement in the properties of TiN -deposited thin films was achieved by the strict control of all operational steps.


2013 ◽  
Vol 773-774 ◽  
pp. 590-601
Author(s):  
Md Fahad Hasan ◽  
James Wang ◽  
Christopher C. Berndt

Plasma sprayed hydroxyapatite coatings were deposited onto mild steel substrates. A Taguchi L9design of experiment protocol was used to optimise the coating process parameters. The effect of three factors: (i) power and secondary gas flow rate (X1), (ii) powder feed rate and carrier gas flow rate (X2), and (iii) stand-off distance (X3) on the coating responses was studied. The responses of the plasma sprayed hydroxyapatite coatings were evaluated in terms of porosity, deposition efficiency, microhardness, crystallinity, and surface roughness. A regression analysis established relationships between process parameters and responses. Higher power, lower powder feed rate and the middle stand-off distance of 11 cm lead to optimum attributes of low porosity, high deposition efficiency, high microhardness, high crystallinity, and high surface roughness.


2006 ◽  
Vol 13 (06) ◽  
pp. 763-771 ◽  
Author(s):  
ESAH HAMZAH ◽  
MUBARAK ALI ◽  
MOHD RADZI HJ. MOHD TOFF

In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.


2014 ◽  
Vol 591 ◽  
pp. 81-84
Author(s):  
M. Pradeep ◽  
Packkirisamy Vignesh ◽  
M. Arun ◽  
M. Durairaj

Influence of surface roughness on coefficient of friction of Titanium coated R19 Steel is investigated in this paper using Pin on Disc Apparatus. Wear properties of R19 Steel are evaluated because it is widely used in making the rail wheel and rail roads over the years. Titanium coating of 100nm thickness was deposited on the R19 Steel by Electron Beam Gun Physical Vapor Deposition method. Wear and friction parameters were evaluated using Pin on Disc apparatus. The Surface morphology plays an important role in affecting the wear rate. Non-contact surface roughness tester was used to examine the surface texture and measure the surface roughness of the specimens. The test was carried out in a pin on disc apparatus for Normal Load of 15N, Sliding Velocity of 3m/s and Time 5 min. The texture and the roughness parameters of the surface affect the coefficient of friction. The experimental values of roughness parameters of uncoated and coated disc and its effect on coefficient of friction are compared and validated. Results show that the Coefficient of friction decreases with lower value of Ra. Lower values of frictional force and coefficient of friction results in lower wear rates.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


Sign in / Sign up

Export Citation Format

Share Document