A Novel Biodegradable Multichamber Microstructure for Implantable Drug Controlled Release

2010 ◽  
Vol 654-656 ◽  
pp. 2269-2272
Author(s):  
Rui Xia Yu ◽  
Xiang Yang Zhou ◽  
Zeng Zhao

The research work reported in this paper design a novel biodegradable multichamber microstructure for implantable drug controlled release by introducing the approach of topology optimization. It is therefore highly desirable to overcome these restrictions that pre-defined topology of the device result in difficulty to obtain a linear or pulsed drug release profile. The designed biodegradable multichamber microstructure is fabricated using UV-LIGA microfabrication and Micro-molding technique. The simulation results show that the multichamber microstructure exhibits a preferable linear drug release profile.

RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 19060-19068 ◽  
Author(s):  
Elisangela P. da Silva ◽  
Marcos R. Guilherme ◽  
Francielle P. Garcia ◽  
Celso V. Nakamura ◽  
Lucio Cardozo-Filho ◽  
...  

Hydrogel nanocomposites of pectin, HEMA and titania for Vit-B12 controlled release with reduced initial release burst were prepared. A reduction of up to ca. 60% was observed.


2007 ◽  
Vol 26-28 ◽  
pp. 757-760
Author(s):  
Rui Xia Yu ◽  
Hua Ling Chen ◽  
Xiang Yang Zhou

Biodegradable polymer multi-layer drug delivery microstructure with micro-chambers has some unique advantages in controlled long-term drug delivery, which can enclose drug in the chambers to realize drug release in a controlled fashion. Therefore, it is necessary to obtain the optimal designs of the micro-chambers and their distributions. In this paper, topology optimization of a three-dimensional biodegradable polymer multi-layer drug delivery microstructure was carried out using the cellular automaton (CA)-based evolutionary structural optimization method. The results show that the optimized controlled release system exhibits a preferable linear drug release profile.


1970 ◽  
Vol 7 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Bendgude Namdeo ◽  
Iyer Vidya ◽  
Poddar Sushilkumar

In the present investigation an attempt has been made to increase therapeutic efficacy, reduce frequency of administration and improve patient compliance by developing controlled release matrix tablets of diltiazem hydrochloride. Diltiazem hydrochloride was formulated as oral controlled release matrix tablets by using sterculia foetida gum. SFG fines were characterized with scanning electron microscopy. The purpose of this study was to optimize release profile of the highly water soluble drug from SFG matrix by using water soluble and swellable excipients like lactose and microcrystalline cellulose respectively. Tablets were prepared by direct compression, and their swelling behavior in presence of these excipients was assessed with the help of a Texture Analyzer. Dissolution assessment was performed using USP 26 apparatus 2 modified by insertion of a mesh to prevent sticking of the tablets to the bottom of vessel and allow them to swell three dimensionally. The interdependence of swelling front movement in relation to excipients type and progression of drug release are explained. It was concluded that unlike in conventional dosage forms insertion of excipients in hydrophilic controlled release tablets containing a water soluble drug gave the finger print information of drug release profile. In vitro drug release from these matrices was characterized and confirmed with the help of real time texture probing. Results indicated that it is possible to achieve desired modulation in the drug release profile by inclusion of lactose and microcrystalline cellulose. Key words: Diltiazem HCl, Sterculia Foetida Gum, Swelling and erosion, Lactose, Texture analysis. doi: 10.3329/dujps.v7i2.2167 Dhaka Univ. J. Pharm. Sci. 7(2): 127-132, 2008 (December)


Author(s):  
Farzane Sivandzade

 Objective: A convenient numerical model has been developed to predict release profile of different types of agents from bulk biodegrading polymer microspheres, including magnitude methods are less accurate than analytical methods. Usually, this study used analytical solutions for the model and compared the analytical results with numerical solution and experimental data.Methods: The objective drug controlled release profiles were modeled based on a four-phase pattern. Then, a specific formulation was considered based on Fick’s second law. After calculating various parameters, the equations were solved using an analytical method.Results: Comparison results showed that analytical solution can reproduce experimental behavior of controlled release systems with a higher accuracy.Conclusion: Although in previous work, drug release profile from a polymer matrix composed of poly lactic-co-glycolic acid was predicted using readily attainable parameters and representing tunable matrix properties by a numerical method, the proposed analytical method can give more accurate results compared to the numerical method.


2019 ◽  
Vol 9 (01) ◽  
pp. 58-64
Author(s):  
Senthilnathan B ◽  
Billy Graham R ◽  
Chaarmila Sherin C ◽  
Vivekanandan K ◽  
Bhavya E

Objective: Drug targeting is the capacity of the dosage form. In which the therapeutic agent acts specifically to desired site of action in the non-targeted tissue with the help of Nano particles is called as the drug targeting. IMATINIB is a used to treat cancer by chemo therapy. Cancers like chronic myeloid leukemia cancer (CML) and acute lymphoblastic leukemia cancer (ALL) and other specific types of gastrointestinal stromal cell tumor (GIST) systemic mast cell disease and Bone marrow failure disorder. It is administered by oral root. For ATP, Tyrosine kinase is act as a binding site. Methodology: The drug IMATINIB is loaded in the polymer chitosan, poly-(D) glucosamine is a bio compactible, bio degradable, nontoxic, antimicrobial and soluble in solvents. This preparation is done by emulsion-droplet coalescence method. Content of the Drug, Size of the particle and Zeta potential, Encapsulation efficiency and Drug release testing are described for this formulation in this study. Results: The Imatinib Nano particles were formulated and evaluated for its invitro drug release profile. Based on the invitro drug release profile of Imatinib nano particles formulation (INP1 – INP5) formulation INP3 was selected as the best formulation in which the particle size was 285.9nm. The invitro % drug release of INP3 formulation was 99.76 ± 0.82 and it was found to be the suitable formulation to manage the cancer. Conclusion: Hence it is concluded that the newly formulated controlled release nanoparticle drug delivery system of Imatinib may be idol and effective by allowing the drug to release continuously for 24 hrs.


Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 110
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Arshad Khan ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.


Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
BB Mohammed ◽  
EJ John ◽  
NK Ajuji

Tablets at present, remain the most preferred oral dosage form because of many advantages they offer to formulators as well as physicians and patients. The objective of this work was to determine the effect of co-processing on the disintegration and drug-release profile of ibuprofen tablets prepared from a co-processed excipient. The co-processed excipient (CE) containing lactose, gelatin and mucin in the ratio 90:9:1 was prepared using co-fusion. The excipient was evaluated for its physicochemical properties and then used to formulate tablets with the addition of a disintegrant by direct compression. The tablets were evaluated for their tablet properties and compared with tablets prepared with cellactose- 80® (CEL) and spray dried lactose® (SDL) and a physical mix (PM) of the co-processed ingredient. Results from evaluation of CE showed that flow rate, angle of repose, Carr’s index and Hausner’s ratio were 5.28 g/sec, 20.30o, 23.75 % and 1.31, respectively. Tablets prepared with CE had friability (0%), crushing strength (5.25) KgF, disintegration time (3 mins) and T50% (2 mins). For CEL, friability (0.4 %), crushing strength (7.25) KgF, disintegration time (1 min) and T50% (2 mins); SDL, friability (1.57 %), crushing strength (7.50) KgF, disintegration time (4 mins) and T50% (2 mins) and PM, friability (2.38 %), crushing strength (5.00) KgF, disintegration time (1 min) and T50% (2 mins). In conclusion, the disintegration time and drug release profile for CE was not superior but compared favorably with CEL, SDL and PM.  


Sign in / Sign up

Export Citation Format

Share Document