scholarly journals AN ANALYTICAL MODEL FOR PREDICTION OF CONTROLLED RELEASE FROM BULK BIODEGRADING POLYMER MICROSPHERES

Author(s):  
Farzane Sivandzade

 Objective: A convenient numerical model has been developed to predict release profile of different types of agents from bulk biodegrading polymer microspheres, including magnitude methods are less accurate than analytical methods. Usually, this study used analytical solutions for the model and compared the analytical results with numerical solution and experimental data.Methods: The objective drug controlled release profiles were modeled based on a four-phase pattern. Then, a specific formulation was considered based on Fick’s second law. After calculating various parameters, the equations were solved using an analytical method.Results: Comparison results showed that analytical solution can reproduce experimental behavior of controlled release systems with a higher accuracy.Conclusion: Although in previous work, drug release profile from a polymer matrix composed of poly lactic-co-glycolic acid was predicted using readily attainable parameters and representing tunable matrix properties by a numerical method, the proposed analytical method can give more accurate results compared to the numerical method.

2010 ◽  
Vol 654-656 ◽  
pp. 2269-2272
Author(s):  
Rui Xia Yu ◽  
Xiang Yang Zhou ◽  
Zeng Zhao

The research work reported in this paper design a novel biodegradable multichamber microstructure for implantable drug controlled release by introducing the approach of topology optimization. It is therefore highly desirable to overcome these restrictions that pre-defined topology of the device result in difficulty to obtain a linear or pulsed drug release profile. The designed biodegradable multichamber microstructure is fabricated using UV-LIGA microfabrication and Micro-molding technique. The simulation results show that the multichamber microstructure exhibits a preferable linear drug release profile.


RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 19060-19068 ◽  
Author(s):  
Elisangela P. da Silva ◽  
Marcos R. Guilherme ◽  
Francielle P. Garcia ◽  
Celso V. Nakamura ◽  
Lucio Cardozo-Filho ◽  
...  

Hydrogel nanocomposites of pectin, HEMA and titania for Vit-B12 controlled release with reduced initial release burst were prepared. A reduction of up to ca. 60% was observed.


1970 ◽  
Vol 7 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Bendgude Namdeo ◽  
Iyer Vidya ◽  
Poddar Sushilkumar

In the present investigation an attempt has been made to increase therapeutic efficacy, reduce frequency of administration and improve patient compliance by developing controlled release matrix tablets of diltiazem hydrochloride. Diltiazem hydrochloride was formulated as oral controlled release matrix tablets by using sterculia foetida gum. SFG fines were characterized with scanning electron microscopy. The purpose of this study was to optimize release profile of the highly water soluble drug from SFG matrix by using water soluble and swellable excipients like lactose and microcrystalline cellulose respectively. Tablets were prepared by direct compression, and their swelling behavior in presence of these excipients was assessed with the help of a Texture Analyzer. Dissolution assessment was performed using USP 26 apparatus 2 modified by insertion of a mesh to prevent sticking of the tablets to the bottom of vessel and allow them to swell three dimensionally. The interdependence of swelling front movement in relation to excipients type and progression of drug release are explained. It was concluded that unlike in conventional dosage forms insertion of excipients in hydrophilic controlled release tablets containing a water soluble drug gave the finger print information of drug release profile. In vitro drug release from these matrices was characterized and confirmed with the help of real time texture probing. Results indicated that it is possible to achieve desired modulation in the drug release profile by inclusion of lactose and microcrystalline cellulose. Key words: Diltiazem HCl, Sterculia Foetida Gum, Swelling and erosion, Lactose, Texture analysis. doi: 10.3329/dujps.v7i2.2167 Dhaka Univ. J. Pharm. Sci. 7(2): 127-132, 2008 (December)


2021 ◽  
Vol 8 ◽  
Author(s):  
Parisa Ghasemiyeh ◽  
Soliman Mohammadi-Samani

Different polymeric materials have been used as drug delivery vehicles for decades. Natural, semisynthetic, and synthetic polymers each have their own specific characteristics and, due to the physicochemical limitations of each polymer, tuning the release rate and targeting the active ingredient to a specific organ or site of action is a complicated task for pharmaceutical scientists. In this regard, polymer blending has been considered as an attractive approach to fabricate novel and unique drug delivery systems with modified physical and/or chemical characteristics. There are three major polymer blending approaches that are used for drug delivery purposes: physical mixtures, core-shell model, and block copolymer model. Each of these types of polymer blends could significantly affect the loading capacities and the kinetics of drug release from the relevant formulations. Drug release from these blended polymers can be tuned through the changes in temperature and pH of the environment, and physiochemical properties of the target organs. Furthermore, the possible molecular interactions among polymers and drug molecules can significantly affect the drug release profile from these blended polymeric micro- and nanocarriers. In this review, first of all, different types of polymers and their various applications in biomedical sciences have been discussed and smart or stimuli responsive polymers are introduced and categorized based on their nature. Then, the purpose of polymer blending in drug delivery systems has been discussed. Different types of polymer blends including physical mixtures, core-shell polymeric carriers, and block copolymers have been summarized with focus on the effect of polymer blending on encapsulated drug release profiles. Finally, the consequence of each blending approach on drug release profile and kinetics of drug release have been mentioned in tabular format.


2019 ◽  
Vol 9 (01) ◽  
pp. 58-64
Author(s):  
Senthilnathan B ◽  
Billy Graham R ◽  
Chaarmila Sherin C ◽  
Vivekanandan K ◽  
Bhavya E

Objective: Drug targeting is the capacity of the dosage form. In which the therapeutic agent acts specifically to desired site of action in the non-targeted tissue with the help of Nano particles is called as the drug targeting. IMATINIB is a used to treat cancer by chemo therapy. Cancers like chronic myeloid leukemia cancer (CML) and acute lymphoblastic leukemia cancer (ALL) and other specific types of gastrointestinal stromal cell tumor (GIST) systemic mast cell disease and Bone marrow failure disorder. It is administered by oral root. For ATP, Tyrosine kinase is act as a binding site. Methodology: The drug IMATINIB is loaded in the polymer chitosan, poly-(D) glucosamine is a bio compactible, bio degradable, nontoxic, antimicrobial and soluble in solvents. This preparation is done by emulsion-droplet coalescence method. Content of the Drug, Size of the particle and Zeta potential, Encapsulation efficiency and Drug release testing are described for this formulation in this study. Results: The Imatinib Nano particles were formulated and evaluated for its invitro drug release profile. Based on the invitro drug release profile of Imatinib nano particles formulation (INP1 – INP5) formulation INP3 was selected as the best formulation in which the particle size was 285.9nm. The invitro % drug release of INP3 formulation was 99.76 ± 0.82 and it was found to be the suitable formulation to manage the cancer. Conclusion: Hence it is concluded that the newly formulated controlled release nanoparticle drug delivery system of Imatinib may be idol and effective by allowing the drug to release continuously for 24 hrs.


Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile


2018 ◽  
Vol 69 (2) ◽  
pp. 321-323
Author(s):  
Georgeta Zegan ◽  
Elena Mihaela Carausu ◽  
Loredana Golovcencu ◽  
Alina Sodor Botezatu ◽  
Eduard Radu Cernei ◽  
...  

Anionic clay matrix acting as drug controlled release system have shown in last years a great potential for delivery of bioactive molecules and chemical therapeutics. This organic-inorganic nanohybrid system is high efficient offering an excellent protection of intercalated compounds from degradation. Compared to other nanoparticles used in medical area, anionic clays type layered double hydroxides have found to be biocompatible according to toxicological studies. Ampicillin containing MgAlLDHs and ZnAlLDH samples have been prepared following two routes: anion-exchange procedure and reconstruction from calcined layered double hydroxides. Solid samples have been characterized by FTIR and SEM-EDX highlighting the alteration of pristine LDHs structure when the antibiotic is introduced in the interlayer gallery.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 773
Author(s):  
Ahmad Safwan Ismail ◽  
Mohammad Jawaid ◽  
Norul Hisham Hamid ◽  
Ridwan Yahaya ◽  
Azman Hassan

Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.


Sign in / Sign up

Export Citation Format

Share Document