Development of Textured Coated Superconductor Substrate Tapes by Severe Plastic Deformation Processing

2010 ◽  
Vol 667-669 ◽  
pp. 1189-1194
Author(s):  
Pinaki Prasad Bhattacharjee ◽  
Nobuhiro Tsuji

An attempt has been made to fabricate highly cube textured ({001}<100>) polycrystalline nickel substrate tapes for coated superconductor applications using severe plastic deformation route. For this purpose high purity Ni (~99.97%) plates with widely different average grain size (28 µm or fine grained starting material and 650 µm or coarse grained starting material, respectively) are severely deformed by Accumulative Roll Bonding (ARB) up to an equivalent strain level of (εeq = 6.4) and annealed at various temperatures between 300° to 800°C for one hour. Upon annealing at different temperatures, the fine grained starting material developed a much stronger cube texture than the coarse grained starting material. By suitable annealing treatment near 100% cube textured tape could be obtained in the SPD processed fine grained nickel tapes having a predominantly low angle boundary network. The observed difference in the strength of cube texture in the two materials could be explained based on the oriented nucleation mechanism of formation of cube texture. The present results indicate that SPD processing route such as ARB is very effective in fabricating high purity Ni or Ni alloys intended for coated superconductor substrate applications.

2010 ◽  
Vol 667-669 ◽  
pp. 397-402 ◽  
Author(s):  
Megumi Kawasaki ◽  
Terence G. Langdon

The processing of metals through the application of severe plastic deformation provides the potential for achieving exceptional grain refinement in bulk solids. Several SPD methods are now available but processing by high-pressure torsion (HPT) has attracted much attention over the last five years. Numerous reports are now available describing the application of HPT to a range of pure metals and simple alloys and excellent grain refinement were achieved using this process with the average grain size often reduced to the nanoscale range. However, in order to make this technique more practical, the nature of the sample characteristics immediately after conventional HPT must be considered in order to understand the fundamental principles of HPT processing. This report examines the procedure with special emphasis on the evolution in hardness homogeneity in both high-purity aluminum and a Zn-22% Al eutectoid alloy processed by HPT.


2012 ◽  
Vol 322 ◽  
pp. 151-162 ◽  
Author(s):  
Oksana Melikhova ◽  
Jakub Čížek ◽  
Petr Hruška ◽  
Marián Vlček ◽  
Ivan Procházka ◽  
...  

Precipitation effects in age-hardenable Mg-13wt.%Tb alloy were investigated in this work. The solution treated alloy was subjected to isochronal annealing and decomposition of the supersaturated solid solution was investigated by positron annihilation spectroscopy combined with transmission electron microscopy, electrical resistometry, differential scanning calorimetry and microhardness measurements. Peak hardening was observed at 200°C due to precipitation of finely dispersed particles of β phase with the D019structure. Vacancy-like defects associated with β phase particles were detected by positron annihilation. At higher temperatures precipitation of β and subsequently β phase takes place. Formation of these phases lead to some additional hardening and introduces open volume defects at precipitate/matrix interfaces. To elucidate the effect of plastic deformation on the precipitation sequence we studied also a Mg-13wt.%Tb alloy with ultra fine grained structure prepared by high pressure torsion. In the ultra fine grained alloy precipitation of the β phase occurs at lower temperature compared to the coarse grained material and the peak hardening is shifted to a lower temperature as well. This effect can be explained by enhanced diffusivity of Mg and Tb atoms due to a dense network of grain boundaries and high density of dislocations introduced by severe plastic deformation. Moreover, dislocations and grain boundaries serve also as nucleation sites for precipitates. Hence, precipitation effects are accelerated in the alloy subjected to severe plastic deformation.


2012 ◽  
Vol 715-716 ◽  
pp. 521-521
Author(s):  
P.P. Bhattacharjee ◽  
Nobuhiro Tsuji

The evolution of cube texture has been investigated in pure Ni (~99.97%) following ultra high straining by Accumulative Roll Bonding (ARB) and annealing. Fully annealed sheets of pure Ni with average recrystallized grain size of ~28 (henceforth termed as fine grained starting material) and 650 µm (henceforth termed as coarse grained starting material) were used as the starting material for the ARB processing. ~50% reduction was imparted in each cycle of ARB and the process was carried up to 8 cycles resulting in an accumulated equivalent strain (εeq) of 6.4. The deformed materials were subsequently annealed at temperatures ranging between 300 to 800°C for one hour. In addition few samples were annealed at 300°C for different time intervals to observe the evolution of texture components. In all cases textures were carefully characterized using Electron Back Scatter Diffraction (EBSD) technique.


2015 ◽  
Vol 651-653 ◽  
pp. 639-644
Author(s):  
Jiri Dvorak ◽  
Petr Král ◽  
Vaclav Sklenička ◽  
Milan Svoboda ◽  
Marie Kvapilová

Processing by severe plastic deformation (SPD) may be defined as such metals forming procedure in which a very high strain is imposed on a bulk material. This paper investigates the effect of different equal channel angular pressing (ECAP) routes and number of ECAP passes on resulting microstructure, mechanical properties and creep behaviour of selected materials. The distinction between various ECAP routes (A, B and C) and the difference in number of ECAP passes applied may lead to variations both in the macroscopic distortions of the individual grains and in the capability to develop a reasonably homogeneous and equiaxed ultrafine-grained microstructure. Experimental materials were processed by ECAP at room temperature using a die with an internal angle of 90° between the two parts of the channel. The ECAP pressing was performed by different routes up to 12 ECAP passes. Tensile creep tests were conducted at temperatures 473 - 673 K and at different applied stresses on ECAP materials and, for comparison purposes, on their unpressed states. Microstructure of samples was characterized by scanning electron microscope (SEM) equipped with the electron backscatter diffraction (EBSD) unit. In conclusion, the ECAP processing route and number of applied ECAP passes could play an important role in creep behaviour and their effect may be different for particular materials. The highest differences in processing routes were revealed for materials especially at lower number of ECAP passes. However, a little apparent dependence of the creep properties was observed during subsequent pressing.


2010 ◽  
Vol 667-669 ◽  
pp. 925-930
Author(s):  
S.V. Krymskiy ◽  
Elena Avtokratova ◽  
M.V. Markushev ◽  
Maxim Yu. Murashkin ◽  
O.S. Sitdikov

The effects of severe plastic deformation (SPD) by isothermal rolling at the temperature of liquid nitrogen combined with prior- and post-SPD heat treatment, on microstructure and hardness of Al-4.4%Cu-1.4%Mg-0.7%Mn (D16) alloy were investigated. It was found no nanostructuring even after straining to 75%. Сryodeformation leads to microshear banding and processing the high-density dislocation substructures with a cell size of ~ 100-200 nm. Such a structure remains almost stable under 1 hr annealing up to 200oC and with further temperature increase initially transforms to bimodal with a small fraction of nanograins and then to uniform coarse grained one. It is found the change in the alloy post–SPD aging response leading to more active decomposition of the preliminary supersaturated aluminum solid solution, and to the alloy extra hardening under aging with shorter times and at lower temperatures compared to T6 temper.


2014 ◽  
Vol 803 ◽  
pp. 216-221 ◽  
Author(s):  
Alin Marian Cazac ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Cristian Predescu ◽  
Andrei Victor Sandhu ◽  
Costică Bejinariu

The paper aims the determination of the friction force by means of external friction stress, at the severe plastic deformation processing using cyclic closed-die forging method. It is known that the total force used at the severe plastic deformation by the method of multiaxial forging is being composed by the deformation force itself and the friction force between the semi-product and the deformation tools. Once the friction stresses known, for a certain material, one can determine the friction force corresponding for a given deformation of a semi-product of a particular shape and sizes. By means of the flowing curve of the semi-product material one can determine the deformation force, which together with the friction force give the total necessary force for a deformation and so one can choose the necessary equipment for the processing of the material by severe plastic deformation. For this purpose it has been severely plastic deformed by the method of multiaxial forging, a semi-product having the sizes 10x10x20 mm, the finished part having the same sizes and shape. It has been measured the deformation force and the extraction force of the finished part from the cavity of the active plate, the late being used for the determination of the friction stress between the semi-product and the active plate.


2011 ◽  
Vol 312-315 ◽  
pp. 1116-1125
Author(s):  
Vladimir V. Popov

Recent models of grain-boundary diffusion are briefly reviewed. Models of diffusion along equilibrium boundaries of recrystallization origin in coarse-grained materials and along non-equilibrium boundaries in nanocrystalline materials obtained by gas condensation and compacting or by severe plastic deformation are considered separately.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
S. Farè ◽  
N. Lecis ◽  
M. Vedani

A study was carried out on aging behaviour of a 6082 alloy processed by two different severe plastic deformation techniques: ECAP and asymmetric rolling. Both techniques were able to generate an ultrafine-grained structure in samples processed at room temperature. It was stated that severe straining promotes marked changes in the postdeformation aging kinetics. The peaks of β′′/β′ transition phases were anticipated and of progressively reduced intensity over the coarse grained alloy. A further peak accounting for onset of recrystallization also appeared in the most severely deformed samples. Full consistency in peak shape and position was found when comparing materials processed by ECAP and asymmetric rolling. Isothermal aging treatments performed at 180°C revealed that in the severely deformed samples, aging became so fast that the hardness curves continuously decreased due to overwhelming effects of structure restoration. On the contrary, aging at 130°C offers good opportunities for fully exploiting the precipitate hardening effects in the ultrafine-grained alloy.


Sign in / Sign up

Export Citation Format

Share Document