scholarly journals The Contour Method for Residual Stress Determination Applied to an AA6082-T6 Friction Stir Butt Weld

2011 ◽  
Vol 681 ◽  
pp. 177-181 ◽  
Author(s):  
Valentin Richter-Trummer ◽  
Pedro Miguel Guimarães Pires Moreira ◽  
João Ribeiro ◽  
Paulo Manuel Salgado Tavares de Castro

Residual stresses parallel to the welding direction on a cross-section of a 3 mm thick friction stir butt-welded aluminum alloy AA6082-T6 plate were determined using the contour method. A full contour map of longitudinal residual stresses on a weld cross section was determined in this way, revealing detailed information on the residual stress distribution in the inside of a friction stir weld, especially in the nugget zone. The typical M-shape, usually described for the residual stress distribution in friction stir welds, was found. The maximum residual stresses are below the yield strength of the material in the shoulder region and, outside of the welding region, low tensile and compressive residual stresses are responsible for the necessary stress equilibrium on the plane of interest. A comparison was made with the established incremental hole drilling technique on an equivalent plate for validation and good agreement of both techniques was obtained. The distribution, as well as the magnitude of the residual stresses measured by both techniques, is very similar, thus validating both the experimental and numerical procedures used for the contour method application, presented and discussed in the present paper.

2013 ◽  
Vol 768-769 ◽  
pp. 79-86 ◽  
Author(s):  
Horst Brünnet ◽  
Dirk Bähre ◽  
Theo J. Rickert ◽  
Dominik Dapprich

The incremental hole-drilling method is a well-known mechanical measurement procedure for the analysis of residual stresses. The newly developed PRISM® technology by Stresstech Group measures stress relaxation optically using electronic speckle pattern interferometry (ESPI). In case of autofrettaged components, the large amount of compressive residual stresses and the radius of the pressurized bores can be challenging for the measurement system. This research discusses the applicability of the measurement principle for autofrettaged cylinders made of steel AISI 4140. The residual stresses are measured after AF and after subsequent boring and reaming. The experimental residual stress depth profiles are compared to numerically acquired results from a finite element analysis (FEA) with the software code ABAQUS. Sample preparation will be considered as the parts have to be sectioned in half in order to access the measurement position. Following this, the influence of the boring and reaming operation on the final residual stress distribution as well as the accuracy of the presented measurement setup will be discussed. Finally, the usability of the FEA method in early design stages is discussed in order to predict the final residual stress distribution after AF and a following post-machining operation.


2015 ◽  
Vol 50 (22) ◽  
pp. 7262-7270 ◽  
Author(s):  
Pengfei Ji ◽  
Zhongyu Yang ◽  
Jin Zhang ◽  
Lin Zheng ◽  
Vincent Ji ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1179
Author(s):  
Fengxiang Shang ◽  
Jinxing Kong ◽  
Dongxing Du ◽  
Zheng Zhang ◽  
Yunhua Li

To reduce the influence of internal residual stress on the processing deformation of thin-walled hydrogen-resistant steel components, combined aging cryogenic and high-temperature treatment was used to eliminate the residual stress, and the effect of cryogenic process parameters on the initial residual stress of the specimens was compared and analyzed based on the contour method. X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy were used to research the mechanism of the effect of cryogenic treatment on the internal residual stress of the specimen. After forging, the internal residual stress distribution of the hydrogen-resistant steel specimens without aging was characterized by tensile stress on the core and compressive stress on both sides, with a stress amplitude of −350–270 MPa. After compound treatment of -130 °C for 10 h and 350 °C for 2 h, the internal residual stress distribution remained unchanged, and the stresses decreased to −150–100 MPa. The internal residual stresses were reduced by 57%–63% compared with the untreated specimens. The cryogenic treatment did not cause phase transformation and carbide precipitation of the hydrogen-resistant steel material. Instead, grain refinement and dislocation density depletion were the main reasons for the reduction in internal residual stresses in the specimens.


2013 ◽  
Vol 554-557 ◽  
pp. 2237-2242 ◽  
Author(s):  
Rui Miguel Ferreira Paulo ◽  
Pierpaolo Carlone ◽  
Robertt A.F. Valente ◽  
Filipe Teixeira-Dias ◽  
Gaetano S. Palazzo

Stiffened panels are usually the basic structural building blocks of airplanes, vessels and other structures with high requirements of strength-to-weight ratio. They typically consist of a plate with equally spaced longitudinal stiffeners on one side, often with intermediate transverse stiffeners. Large aeronautical and naval parts are primarily designed based on their longitudinal compressive strength. The structural stability of such thin-walled structures, when subjected to compressive loads, is highly dependent on the buckling strength of the structure as a whole and of each structural member. In the present work, a number of modelling and numerical calculations, based on the Finite Element Method (FEM), is carried out in order to predict the ultimate load level when stiffened panels are subjected to compressive solicitations. The simulation models account not only for the elasto-plastic nonlinear behaviour, but also for the residual stresses, material properties modifications and geometrical distortions that arise from Friction Stir Welding (FSW) operations. To construct the model considering residual stresses, their distribution in FSW butt joints are obtained by means of a numerical-experimental procedure, namely the contour method, which allows for the evaluation of the normal residual stress distribution on a specimen section. FSW samples have been sectioned orthogonally to the welding line by wire electrical discharge machining (WEDM). Displacements of the relaxed surfaces are then recorded using a Coordinate Measuring Machine and processed in a MATLAB environment. Finally, the residual stress distribution is evaluated by means of an elastic FE model of the cut sample, using the measured and digitalized out-of-plane displacements as input nodal boundary conditions. With these considerations, the main goal of the present work will then be related to the evaluation of the effect of FSW operations, in the ultimate load of stiffened panels with complex cross-section shapes, by means of realist numerical simulation models.


2013 ◽  
Vol 770 ◽  
pp. 159-163
Author(s):  
Dian Ye Cao ◽  
Yin Fei Yang ◽  
Zhi Wu Liu ◽  
Jie Yu ◽  
Liang Li

In order to study the residual stress distribution of the casing part in aeroengine, the hole-drilling method was used to measure the residual stress before and after the annealing treatment. The measurement results indicated that the annealing treatment significantly improved the residual stress distribution in the part, and the residual stresses were showed as compressive stress. Meanwhile, the measured residual stress distribution would provide the basis for controlling the machining distortion of the casing part in aeroengine.


1982 ◽  
Vol 104 (3) ◽  
pp. 223-228 ◽  
Author(s):  
C. H. Popelar ◽  
T. Barber ◽  
J. Groom

A combined analytical and experimental method for inferring the residual stresses in a pipe formed by joining two sections with a girth butt weld is described. The relieved surface strains due to cutting the pipe in two are measured and fitted in a least-square sense to the strains predicted by an analysis of the sectioned pipes. This permits a prediction of the through-thickness distribution of the residual longitudinal normal and radial shear stresses at the site of the cut. The procedure is used to infer the residual stress distribution due to last-pass-heat-sink welding of two sections of 16-in- (400-mm-) dia pipe.


2019 ◽  
Vol 15 (3) ◽  
pp. 599-616 ◽  
Author(s):  
Dibakor Boruah ◽  
Xiang Zhang ◽  
Matthew Doré

PurposeThe purpose of this paper is to develop a simple analytical model for predicting the through-thickness distribution of residual stresses in a cold spray (CS) deposit-substrate assembly.Design/methodology/approachLayer-by-layer build-up of residual stresses induced by both the peening dominant and thermal mismatch dominant CS processes, taking into account the force and moment equilibrium requirements. The proposed model has been validated with the neutron diffraction measurements, taken from the published literature for different combinations of deposit-substrate assemblies comprising Cu, Mg, Ti, Al and Al alloys.FindingsThrough a parametric study, the influence of geometrical variables (number of layers, substrate height and individual layer height) on the through-thickness residual stress distribution and magnitude are elucidated. Both the number of deposited layers and substrate height affect residual stress magnitude, whereas the individual layer height has little effect. A good agreement has been achieved between the experimentally measured stress distributions and predictions by the proposed model.Originality/valueThe proposed model provides a more thorough explanation of residual stress development mechanisms by the CS process along with mathematical representation. Comparing to existing analytical and finite element methods, it provides a quicker estimation of the residual stress distribution and magnitude. This paper provides comparisons and contrast of the two different residual stress mechanisms: the peening dominant and the thermal mismatch dominant. The proposed model allows parametric studies of geometric variables, and can potentially contribute to CS process optimisation aiming at residual stress control.


2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


1973 ◽  
Vol 95 (4) ◽  
pp. 238-242 ◽  
Author(s):  
S. Vaidyanathan ◽  
H. Weiss ◽  
I. Finnie

The residual stress distribution for a circumferential weld between cylinders was obtained in a prior publication for a full penetration, single pass weld with no variation of alloy content across the weld. In the present work the approach is extended to cover a wider variety of weld conditions. It is shown that the effects of multipass welds, partial penetration welds, and welds with filler metal differing greatly in properties from the base metal can approximately be taken into account. Experimental results are presented to support the proposed method of analysis.


Sign in / Sign up

Export Citation Format

Share Document