Developments in the Treatment of Residual Stresses in Welded Components

2011 ◽  
Vol 681 ◽  
pp. 73-78
Author(s):  
Steve K. Bate ◽  
Ian Symington ◽  
John Sharples ◽  
Richard Charles ◽  
Adam Toft ◽  
...  

A long-term UK research programme on environmentally assisted cracking (EAC), residual stresses [1, 2] and fracture mechanics [3, 4] was launched in 2004. It involves Rolls-Royce plc and Serco Technical Services, supported by UK industry and academia. The residual stress programme is aimed at progressing the understanding of residual stresses and on the basis of this understanding manage how residual stresses affect the structural integrity of plant components. Improved guidance being developed for the treatment of residual stresses in fracture assessments includes the use of stress intensity factor solutions for displacement controlled loading as opposed to the more commonly used load controlled solutions. Potential reductions in crack driving force are also being investigated in relation to (i) utilizing a residual stress field that has “shaken-down” due to operational loads, (ii) introducing a crack progressively as opposed to instantaneously, and (iii) allowing for the fact that a crack may have been initiated during the life of a component as opposed to being present from the start-of-life. This paper describes some of these latest developments in relation to residual stress effects

Author(s):  
S. J. Lewis ◽  
S. Hossain ◽  
C. E. Truman ◽  
D. J. Smith ◽  
M. Hofmann

A number of previously published works have shown that the presence of residual stresses can significantly affect measurements of fracture toughness, unless they are properly accounted for when calculating parameters such as the crack driving force. This in turn requires accurate, quantitative residual stress data for the fracture specimens prior to loading to failure. It is known that material mechanical properties may change while components are in service, for example due to thermo-mechanical load cycles or neutron embrittlement. Fracture specimens are often extracted from large scale components in order to more accurately determine the current fracture resistance of components. In testing these fracture specimens it is generally assumed that any residual stresses present are reduced to a negligible level by the creation of free surfaces during extraction. If this is not the case, the value of toughness obtained from testing the extracted specimen is likely to be affected by the residual stress present and will not represent the true material property. In terms of structural integrity assessments, this can lead to ‘double accounting’ — including the residual stresses in both the material toughness and the crack driving force, which in turn can lead to unnecessary conservatism. This work describes the numerical modelling and measurement of stresses in fracture specimens extracted from two different welded parent components: one component considerably larger than the extracted specimens, where considerable relaxation would be expected as well as a smaller component where appreciable stresses were expected to remain. The results of finite element modelling, along with residual stress measurements obtained using the neutron diffraction technique, are presented and the likely implications of the results in terms of measured fracture toughness are examined.


Author(s):  
A. H. Sherry ◽  
K. S. Lee ◽  
M. R. Goldthorpe ◽  
D. W. Beardsmore

It is recognised that the driving force for the initiation and propagation of defects in materials may, under some circumstances, include contributions from both externally applied loads such as internal pressure in pressure vessels and piping and secondary stresses such as weld residual stresses. For non stress-relieved welds, residual stresses can provide a significant proportion of the crack driving force. This paper describes the results obtained from an experimental programme aimed at extending the understanding of residual stress effects on cleavage fracture. The paper describes the preparation and testing of standard and preloaded compact-tension specimens of an A533B pressure vessel steel at its Master Curve reference temperature. Standard tests on compact-tension specimens provide fracture toughness data which are broadly consistent with the conventional three-parameter Weibull model, with Kmin = 20 MPa√m and an exponent of about 4. The preloaded compact-tension specimens included a high level of tensile residual stress at the crack location. Fracture toughness data obtained using the test standards from these specimens fall significantly below the standard specimen data, since the contribution from residual stresses is ignored. However, when due account is taken of the residual stress on the crack driving force using a correct definition of the J-integral, the distributions of fracture toughness data from both specimen types are found to overlay each other. The definition of J used in this paper allows residual stress effects on fracture to be accounted for in a single fracture parameter.


Author(s):  
A. H. Sherry ◽  
M. R. Goldthorpe ◽  
J. Fonseca ◽  
K. Taylor

Residual stresses are internal stresses generated during the fabrication and/or operation of engineering structures. Such stresses can provide the major element of the driving force for crack initiation and growth. Structural integrity assessment procedures, provide guidance for the assessment of defects located within regions of high residual stress. However, such guidance may be conservative where the defect develops progressively during service. This paper describes recent experimental and numerical work aimed at quantifying such conservatisms and providing improved guidance for undertaking more realistic analyses. The results demonstrate that pre-loaded compact-tension specimens provide a useful means for studying the behaviour of cracks within residual stress fields. The magnitude of calculated crack driving forces due to residual stresses is influenced by the approach used to introduce cracks into the stress field, with progressive cracks providing lower levels of crack driving force than instantaneously introduced cracks. The J R-curve associated with cracks under primary or combined primary + secondary loading can apparently be rationalized when the total crack driving force is calculated using methods that take proper account of the influence of prior plasticity on the J-integral. However, it is noted that due to differences in the form of the crack-tip stress and strain fields for static and growing cracks, such values of J may be path dependent and influenced by the magnitude of the growth increment.


Author(s):  
Wentao Cheng ◽  
David L. Rudland ◽  
Gery Wilkowski ◽  
Wallace Norris

The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to assess the integrity of control rod drive mechanism (CRDM) nozzles in existing plants that are not immediately replacing their RPV heads. This two-part paper summarizes some of the efforts undertaken on the behalf of the U.S.NRC for the development of detailed residual stress and circumferential crack-driving force solutions to be used in probabilistic determinations of the time from detectable leakage to failure. In this first paper, the finite element (FE) simulations were conducted to investigate the effects of weld geometry on the residual stresses in the J-weld for a centerhole CRDM nozzle. The variables of weld geometry included three weld heights (weld sizes) and three groove angles for each weld height while keeping the same weld size. The analysis results indicate that the overall weld residual stress decreases as the groove angle increases and higher residual stress magnitude is associated with certain weld height. The results also reveal that the axial residual stresses in the Alloy 600 tube are very sensitive to the weld height, and that the tube hoop stresses above the J-weld root increase with the increasing weld height.


Author(s):  
Adam Toft ◽  
David Beardsmore ◽  
Colin Madew ◽  
Huego Teng ◽  
Mark Jackson

Within the UK nuclear industry the assessment of fracture in pressurised components is often carried out using procedures to calculate the margin of safety between a lower-bound fracture toughness and the crack driving force. Determination of the crack driving force usually requires the calculation of elastic stress intensity factor solutions for primary loads and secondary loads arising from weld residual stresses and/or thermal stresses. Within established UK assessment procedures weight function solutions are available which allow the stress intensity factors to be calculated from the through-wall opening-mode stress distribution in an uncracked component. These weight-function solutions are generally based on models where either no boundary condition is applied, or where one is applied at a distance either side of the crack plane that is very long compared with the crack size and wall thickness. Such solutions do not take into account any reduction in the stress field that might occur as the distance from the crack faces increases. Weld residual stress fields may often be expected to reduce in this manner. A separate, earlier study has shown that the stress intensity factor for a cracked plate loaded in displacement control decreases substantially as the loading plane is moved closer to the crack plane. It would therefore be expected that a similar reduction in stress intensity factor would be obtained for a residual stress analysis when displacement boundary conditions are imposed at a distance relatively close to the crack plane. This paper describes an investigation of the differences, particularly in terms of a reduction in calculated stress intensity factor, which may arise from application of displacement controlled stress intensity factor solutions, as compared with load controlled solutions, when considering weld residual stresses. Consideration is also given as to how new displacement controlled stress intensity factor solutions could be developed by modification of existing load controlled solutions.


Author(s):  
Xian-Kui Zhu ◽  
Tom McGaughy

Large plastic deformation and residual stresses exist in mechanical damages to pipelines. If a crack occurs in the damages, residual stresses will affect mechanics behavior of the crack and path independence of the J-integral, and so the J-integral may lose capacity to describe fracture driving force. This paper theoretically investigates basic conditions required for the path independence of the J-integral and major factors affecting the path independence, including the incremental plasticity, finite strains and residual stresses. Residual stress modified J-integrals are then introduced for ensuring the path independence. With use of a notched beam, detailed elastic-plastic finite element analyses are performed in terms of the incremental plasticity for a crack subject to three-point bending. The path dependence of the J-integral due to the three major factors is then evaluated. Numerical results show that the residual stress modified J-integral is path-independent, and able to describe the fracture driving force for ductile cracks in a residual stress field. This provides a new technology to assess pipeline integrity for cracks coupling residual stresses.


1998 ◽  
Vol 120 (2) ◽  
pp. 122-128 ◽  
Author(s):  
P. Dong ◽  
J. K. Hong ◽  
J. Zhang ◽  
P. Rogers ◽  
J. Bynum ◽  
...  

As a part of the welding fabrication procedure development for the next generation space shuttle external tank, aluminum-lithium wide-panel specimens were used to assess the interactions between repair weld residual stresses and external loading conditions. The detailed residual stress development in the wide panel specimens with a repair weld was analyzed using an advanced finite element procedure. External tension loading effects were then incorporated in the residual stress model to study the interactions between the residual stress field and external tensile loading. Wide-panel tensile tests were also performed to extract photo strain and strain-gage results. A good agreement between the finite element and experimental results was obtained. The results demonstrate that the presence of high tensile residual stresses within a repair weld has a drastic impact on the stress/strain distribution in the wide panel specimens subjected to external loading. Its implications on structural integrity are discussed in light of the wide-panel results. The effects of post-welding mechanical treatment such as planishing were also examined.


2008 ◽  
Vol 385-387 ◽  
pp. 529-532 ◽  
Author(s):  
Sascha Marc Häusler ◽  
Peter Horst

This work presents the enhancement of a pseudo-numerical tool for fatigue crack growth investigations on integrally stiffened metallic panels. The model is based on an analytical approach that demands compatibility of displacement between skin sheet and stiffener. Since the basis model was presented before, the focus of the present work is on the incorporation of residual stress effects in order to improve simulation results of welded panel configurations that are manufactured by laser beam welding or friction stir welding and exhibit a significant amount of residual stresses. The necessary input parameters for the developed residual stress module are determined from experimental residual stress field measurements. Simulation results using the presented approach are compared with results from finite element simulations on a two stringer panel which show the good accordance of the base model as well as the capability of the tool enhancements to account for the crack retarding effect caused by residual stresses.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Foroogh Hosseinzadeh ◽  
Muhammed Burak Toparli ◽  
Peter John Bouchard

Welding is known to introduce complex three-dimensional residual stresses of substantial magnitude into pressure vessels and pipe-work. For safety-critical components, where welded joints are not stress-relieved, it can be of vital importance to quantify the residual stress field with high certainty in order to perform a reliable structural integrity assessment. Finite element modeling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process (Hurrell et al., Development of Weld Modelling Guidelines in the UK, Proceedings of the ASME Pressure Vessels and Piping Conference, Prague, Czech Republic, July 26–30, 2009, pp. 481–489). The idea of creating weld residual stress benchmarks against which the performance of weld modeling procedures and practitioners can be evaluated is gaining increasing acceptance. A stainless steel beam 50 mm deep by 10 mm wide, autogenously welded along the 10 mm edge, is a candidate residual stress simulation benchmark specimen that has been studied analytically and for which neutron and synchrotron diffraction residual stress measurements are available. The current research was initiated to provide additional experimental residual stress data for the edge-welded beam by applying, in tandem, the slitting and contour residual stress measurement methods. The contour and slitting results were found to be in excellent agreement with each other and correlated closely with published neutron and synchrotron residual stress measurements when differences in gauge volume and shape were accounted for.


Author(s):  
Foroogh Hosseinzadeh ◽  
P. John Bouchard ◽  
M. Burak Toparli

Welding is known to introduce complex three-dimensional residual stresses of substantial magnitude into pressure vessels and pipe-work. For safety-critical components, where welded joints are not stress-relieved, it can be of vital importance to quantify the residual stress field with high certainty in order to perform a reliable structural integrity assessment. Finite element modeling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process [1]. The idea of creating weld residual stress benchmarks against which the performance of weld modeling procedures and practitioners can be evaluated is gaining increasing acceptance. A stainless steel beam 50 mm deep by 10 mm wide, autogenously welded along the 10 mm edge, is a candidate residual stress simulation benchmark specimen that has been studied analytically and for which neutron and synchrotron diffraction residual stress measurements are available. The current research was initiated to provide additional experimental residual stress data for the edge-welded beam by applying, in tandem, the slitting and contour residual stress measurement methods. The contour and slitting results were found to be in excellent agreement with each other and correlated closely with published neutron and synchrotron residual stress measurements when differences in gauge volume and shape were accounted for.


Sign in / Sign up

Export Citation Format

Share Document