scholarly journals Microstructural Investigation of Co-Rolled Nanocrystalline Stainless Steel Sheets

2011 ◽  
Vol 702-703 ◽  
pp. 127-130 ◽  
Author(s):  
Delphine Retraint ◽  
M. Zakaria Quadir ◽  
Wan Qiang Xu ◽  
Laurent Waltz ◽  
Michael Ferry

It is possible to produce a nanocrystalline, multilayered composite structure with enhanced mechanical properties by assembling three 316L surface nanostructured stainless steel plates by roll bonding. The Surface Mechanical Attrition Treatment (SMAT) was first used to generate nanocrystalline layers on the elementary plates so that their mechanical properties were improved. They were then assembled through co-rolling. A composite structure of nanocrystalline layers of high strength alternating with more ductile layers was obtained to achieve both high strength and ductility. Microscopy observations and EBSD measurements were carried out and the bonding interfaces were analysed in detail to explore the mechanisms involved during the SMAT/Co-rolling duplex process.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2356
Author(s):  
Qiong He ◽  
Wei Wei ◽  
Ming-Sai Wang ◽  
Feng-Jiao Guo ◽  
Yu Zhai ◽  
...  

Martensite transformation and grain refinement can make austenitic stainless steel stronger, but this comes at a dramatic loss of both ductility and corrosion resistance. Here we report a novel gradient structure in 301 stainless steel sheets, which enables an unprecedented combination of high strength, improved ductility and good corrosion resistance. After producing inter-layer microstructure gradient by surface mechanical attrition treatment, the sheet was annealed at high temperature for a short duration, during which partial reverse transformation occurred to form recrystallized austenitic nano-grains in the surface layer, i.e., introducing extra intra-layer heterogeneity. Such 3D microstructure heterogeneity activates inter-layer and inter-phase interactions during deformation, thereby producing back stress for high yield strength and hetero-deformation induced (HDI) hardening for high ductility. Importantly, the recrystallized austenitic nano-grains significantly ameliorates the corrosion resistance. These findings suggest an effective route for evading the strength–ductility and strength–corrosion tradeoffs in stainless steels simultaneously.


2018 ◽  
Vol 786 ◽  
pp. 319-324 ◽  
Author(s):  
Markku Kananen ◽  
Antti Järvenpää ◽  
Matias Jaskari ◽  
Kari Mäntyjärvi

Corrugated core panels contain a formed, corrugated core bonded between two skin sheets. These panels are typically used in applications, where a low weight is required with integrity in stiffness. This paper demonstrates the mechanical properties of a simple panel structure (SPS), constructed using strips of work-hardened, austenitic stainless steel (ASS) grade 1.4310 (type 301) with the yield strength (YS) of ~1200 MPa. The 0.5 mm thick strips were formed into a C-shape and subsequently laser welded together by lap joints to form a SPS. The thickness of the SPS was 50 mm. The bending tests for the SPS were carried out transverse and 45-degrees related to the orientation of the web sheet. The results showed that the SPS, as loaded in the transverse direction, has about the same bending stiffness prior yielding as that of the previously tested 6 mm thick, low carbon S355 plain steel sheets, but the SPS is three times lighter than 6mm thick plain steel sheet. Compared with a corrugated core panel made of an annealed ferritic stainless steel (SS-panel) with the YS ~ 250 MPa, the weight of the both panels are roughly the same, but the bending resistance of the SPS is 45% higher. Experimental tests also verified that the benefit in the stiffness is quickly reduced if the load direction differs from transverse. In the 45-degrees loading direction, the SPS and the SS-panel had almost the same bending strength. On the other hand, the SPS and the SS-panel stiffnesses are much better than that of the carbon steel (the YS ~ 300 MPa) panel (CS-panel) in the both loading directions – the SPS being twice as stiff as the CS-panel.


2007 ◽  
Vol 353-358 ◽  
pp. 1810-1813 ◽  
Author(s):  
Xiao Hua Yang ◽  
Wei Zhen Dui ◽  
Gang Liu

The mechanical properties of the 316L stainless steel subjected to surface mechanical attrition treatment (SMAT) have been studied, these properties are hardness, tensile properties and wear resistance. The research shows that the thickness of the hardened layer increases with the increasing of the treating time. The refined microstructure in the treated layer led to increasing in hardness, strength, and wear resistance. It is obvious that the surface layer hardness and bulk yield strength are increasing when the SMAT time reaches 5 minutes. The increase of surface layer wear resistance is obvious when the SMAT time is 15 minutes. The SEM observation of the wear scars shows that the nanocrystalline layer might reduce the effect of adhesive wear of 316L stainless steel. Therefore, the wear mechanism changes from adhesive abrasion to grinding particle abrasion after SMAT.


2013 ◽  
Vol 762 ◽  
pp. 487-492 ◽  
Author(s):  
Laurent Waltz ◽  
Delphine Retraint ◽  
Arjen Roos

The aim of the present study is first to describe an original process, the so called duplex process, whose feature is the coupling between the well-known SMAT (Surface Mechanical Attrition Treatment) and the traditional co-rolling. The first step of this process consists of SMA-Treatment of 316L stainless steel sheets to generate nanocrystalline layers on their top surfaces according to the grain refinement mechanism of austenitic steels which is well described in the literature. During the second step, three treated sheets are co-rolled at 550°C to obtain a semi-massive nanocrystallised multilayer structure with improved mechanical strength alternating nanocrystalline, transition and coarse grain layers. The second part of this work deals with the mechanical and the microstructural characterization of the as-obtained structures. Thus, sharp nanoindentation tests performed over the cross section of the laminates coupled with Transmission Electron Microscopy (TEM) confirm the presence of nanograins after the thermomechanical treatment. In addition, the enhanced yield strength demonstrated by tensile tests correlate well with the theoretical volume fractions of nanoand transition layers. The interface cohesion between the sheets is tested by three-point bending tests and the interface bonding is evaluated by microstructural observations.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1624
Author(s):  
Aiying Chen ◽  
Chen Wang ◽  
Jungan Jiang ◽  
Haihui Ruan ◽  
Jian Lu

Gradient structures in engineering materials produce an impressive synergy of strength and plasticity, thereafter, have recently attracted extensive attention in the material families. Gradient structured stainless steels (SS) were prepared by surface mechanical attrition treatment (SMAT) with different impacting velocities. The microstructures of the treated samples are characterized by gradient twin fraction and phase constituents. Quantitative relations of gradient microstructure with impacting time and mechanical properties are analyzed according to the observations of SEM, TEM, XRD, and tests of mechanical property. The processed SSs exhibited to be simultaneously stiff, strong, and ductile, which can be attributed to the co-operation of the different spatial distributions of multi-scaled structures. The formation of gradient twinned structure is resolved and the strengthening by gradient structure is explored.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Allegheny Stainless Type 205 is a chromium-manganese nitrogen austenitic high strength stainless steel that maintains its low magnetic permeability even after large amounts of cold working. Annealed Type 205 has higher mechanical properties than any of the conventional austenitic steels-and for any given strength level, the ductility of Type 205 is comparable to that of Type 301. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-640. Producer or source: Allegheny Ludlum Corporation. Originally published March 1996, revised October 1997.


Sign in / Sign up

Export Citation Format

Share Document