Oxidation Behaviors of Two and Three Phase Mo-Si-B Alloys via Si Pack Cementation

2012 ◽  
Vol 706-709 ◽  
pp. 2446-2449
Author(s):  
Young Ho Song ◽  
Joon Sik Park ◽  
Jeong Min Kim ◽  
Seong Hoon Yi

Mo-Si-B alloys have been received an attention due to the high temperature strength and phase stability. However, the nature of poor oxidation resistance often limits the application of the alloy system. In order to resolve the poor oxidation resistance of the alloy system, in this study, the oxidation behaviors of Si diffusion coated Mo-Si-B alloys have been investigated in order to identify the underlying mechanism for the effect of the constituent of the phase combination of Mo-Si-B alloys. The oxidation tests performed at 1100 °C show that the produced MoSi2 phase, as a result of the coatings, give an excellent oxidation resistance at prolonged high temperature exposure in air. The oxidation behaviors of uncoated and Si coated Mo-Si-B alloys have been discussed in terms of microstructural observations during oxidation tests.

2011 ◽  
Vol 695 ◽  
pp. 365-368 ◽  
Author(s):  
Young Ho Song ◽  
Joon Sik Park ◽  
Jeong Min Kim ◽  
Seong Hoon Yi

Mo-Si-B alloys have been received an attention due to the high temperature strength and phase stability. However, the nature of poor oxidation resistance often limits the application of the alloy system. The unstable MoO3 phase is naturally produced when the alloys were exposed at low and /or high temperature in an air atmosphere. In order to resolve the poor oxidation resistance of the alloy system, several attempts have been made via surface coatings and/or component additions. In this study, the oxidation behaviors of the Ti powder thermal spray coated Mo-Si-B alloys have been investigated in order to identify the underlying mechanism for the effect of precursor Ti coatings on Mo-Si-B alloys. The oxidation tests performed at 1100 °C show that the Ti powder was tightly bonded and reacted with the surface of the substrate, and TiO2 layer was formed at the outer surface of the coated Ti layer as a result of oxidation exposure. The oxidation behaviors of pure elemental component coated Mo-Si-B alloys have been discussed in terms of microstructural observations during oxidation tests.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Alloy Digest ◽  
1954 ◽  
Vol 3 (12) ◽  

Abstract HASTELLOY Alloy X is a nickel-chromium-iron-molybdenum alloy recommended for high-temperature applications. It has outstanding oxidation resistance at high temperatures under most operating conditions, and good high-temperature strength. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on forming, heat treating, and machining. Filing Code: Ni-14. Producer or source: Haynes Stellite Company.


Alloy Digest ◽  
2006 ◽  
Vol 55 (6) ◽  

Abstract AK Steel 441 has good high-temperature strength, an equiaxed microstructure, and good high-temperature oxidation resistance. The alloy is a niobium-bearing ferritic stainless steel. This datasheet provides information on composition, hardness, and tensile properties as well as deformation. It also includes information on high temperature performance and corrosion resistance as well as forming and joining. Filing Code: SS-965. Producer or source: AK Steel.


Alloy Digest ◽  
2007 ◽  
Vol 56 (10) ◽  

Abstract Kubota alloys HK40 and HK50 are austenitic Fe-Cr-Ni alloys that have been standard heat-resistant materials for more than four decades. With moderately high temperature strength, oxidation resistance, and carburization resistance the alloys are used in a wide variety of industrial applications. HK 50 has slightly higher carbon content. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on casting, heat treating, machining, and joining. Filing Code: SS-998. Producer or source: Kubota Metal Corporation, Fahramet Division.


Alloy Digest ◽  
2018 ◽  
Vol 67 (4) ◽  

Abstract Permodur 4742 is an alloy with good high temperature strength and oxidation resistance and has an aluminum addition. The alloy is also called Ferrotherm 4742 at Edelstahlwerke Südwestfalen GmbH. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: SS-1284. Producer or source: Deutsche Edelstahlwerke.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4099
Author(s):  
Georg Hasemann ◽  
Chad Harris ◽  
Manja Krüger ◽  
John H. Perepezko

Alloys in the V-Si-B system are a new and promising class of light-weight refractory metal materials for high temperature applications. Presently, the main attention is focused on three-phase alloy compositions that consist of a vanadium solid solution phase and the two intermetallic phases V3Si and V5SiB2. Similar to other refractory metal alloys, a major drawback is the poor oxidation resistance. In this study, initial pack-cementation experiments were performed on commercially available pure vanadium and a three-phase alloy V-9Si-5B to achieve an oxidation protection for this new type of high temperature material. This advance in oxidation resistance now enables the attractive mechanical properties of V-Si-B alloys to be used for high temperature structural applications.


2010 ◽  
Vol 654-656 ◽  
pp. 1920-1923 ◽  
Author(s):  
Wen Wang ◽  
Yu Xian Cheng ◽  
Sheng Long Zhu ◽  
Fu Hui Wang ◽  
Li Xin

TiAl based alloys are promising candidates for structural applications at high temperature. However, the poor oxidation resistance above 800oC obviously restrains their applications. Although NiCrAlY overlay coatings can remarkably improve the high temperature oxidation resistance of TiAl, serious inward diffusion of Ni from the coating to the substrate occurs which could reduce the lifetime of the coating/substrate system. Apparently, the development of interdiffusion barrier could overcome the disadvantage of the NiCrAlY/TiAl system. In this work, Ta, TiN and Cr2O3 interlayers were deposited between NiCrAlY coating and γ-TiAl substrate as diffusion barrier (DB). The interdiffusion behavior of the TiAl/DB/NiCrAlY system was investigated at 1000°C. The results showed that the metallic and nitride interlayers cannot retard the interdiffusion of Ni effectively. As an active diffusion barrier, the oxide interlayer obviously suppressed the inward diffusion of Ni from the coating to the substrate by the formation of alumina-rich layers at both the TiAl/DB and DB/NiCrAlY interfaces.


1994 ◽  
Vol 350 ◽  
Author(s):  
François-charles dary ◽  
Shiela R. Woodard ◽  
Tresa M. Pollock

AbstractA new class of intermetallic matrix composites (IMC's) based on orthorhombic titanium aluminides offer attractive properties for high-temperature structural components at temperatures up to 760°C. Results from an ongoing study on the microstructural stability and mechanical properties of the orthorhombic-based alloy Ti-22Al–23Nb (at%), in both monolithic and composite forms, are discussed. Oxygen acquired during processing or as a result of high-temperature exposure in air or vacuum has a pronounced influence on the microstructure of the monolithic and composite materials. Two-phase lath microstructures of ordered beta (βo) + orthorhombic (O) phases produced by processing low oxygen material above the beta transus are morphologically stable at 760°C. Conversely, in higher-oxygen three-phase microstructures containing O+βo+ α2(Ti3Al), lath coarsening and additional precipitation of α2 in oxygen-enriched sheet surface regions is observed. At 760°C/69MPa the two-phase lath microstructure has a higher creep resistance and lower tensile strength compared to the three-phase α2- containing microstructures of the higher oxygen material.


Sign in / Sign up

Export Citation Format

Share Document