Design Optimization Procedure for Amorphous Core Distribution Transformers

2012 ◽  
Vol 721 ◽  
pp. 159-164
Author(s):  
Eleftherios I. Amoiralis ◽  
Marina A. Tsili ◽  
Antonios Kladas

The paper presents a design optimization procedure appropriate for distribution transformers with amorphous alloy cores. Several considerations and the main differences from the design practice of conventional transformers are presented and discussed in detail. Moreover, comparison of results present the significant benefit in the transformer energy efficiency by the selection of amorphous alloy core, despite its initial higher installation cost.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 164
Author(s):  
Jianwei Shao ◽  
Cuidong Xu ◽  
Ka Wai Eric Cheng

The rail transit system is a large electric vehicle system that is strongly dependent on the energy technologies of the power system. The use of new energy-saving amorphous alloy transformers can not only reduce the loss of rail transit power, but also help alleviate the power shortage situation and electromagnetic emissions. The application of the transformer in the field of rail transit is limited by the problem that amorphous alloy is prone to debris. this paper studied the stress conditions of amorphous alloy transformer cores under different working conditions and determined that the location where the core is prone to fragmentation, which is the key problem of smoothly integrating amorphous alloy distribution transformers on rail transit power supply systems. In this study, we investigate the changes in the electromagnetic field and stress of the amorphous alloy transformer core under different operating conditions. The finite element model of an amorphous alloy transformer is established and verified. The simulation results of the magnetic field and stress of the core under different working conditions are given. The no-load current and no-load loss are simulated and compared with the actual experimental data to verify practicability of amorphous alloy transformers. The biggest influence on the iron core is the overload state and the maximum value is higher than the core stress during short circuit. The core strain caused by the side-phase short circuit is larger than the middle-phase short circuit.


1992 ◽  
Vol 03 (01) ◽  
pp. 137-170 ◽  
Author(s):  
MASSOUD PEDRAM ◽  
ERNEST S. KUH

This paper presents a hierarchical floorplanning approach for macrocell layouts which is based on the bottom-up clustering, shape function computation, and top-down floorplan optimization with integrated global routing and pin assignment. This approach provides means for specifying and techniques for satisfying a wide range of constraints (physical, topological, timing) and is, therefore, able to generate floorplans for a number of different layout styles. A systematic and efficient optimization procedure during the selection of suitable floorplan patterns that integrates floorplanning, global routing and pin assignment, a new pin assignment technique based on linear assignment and driven by the global routing solution and floorplan topology, and an effective timing-driven floorplanning scheme are among the other novel features of the floorplanner. These techniques have been incorporated in BEAR-FP, a macrocell layout system developed at the University of California, Berkeley. Results on various placement and floorplanning benchmarks are quite good.


Author(s):  
Rafael Estepa ◽  
Antonio Estepa ◽  
Germán Madinabeitia ◽  
Mark Davis

This paper presents an adaptive algorithm that improves the energy efficiency of VoIP applications over IEEE 802.11 networks. The algorithm seeks to achieve the largest energy savings subject to reaching a minimum speech quality under the prevailing network conditions. The control mechanism used is the dynamic selection of the packet size during the communication.This algorithm has been implemented in an experimental testbed and the results demonstrate that our packetization rate control algorithm can provide energy savings in uncongested IEEE 802.11 networks (up to 30%). Furthermore, under poor network conditions the algorithm can prolong the duration of the call before it is dropped at the expense of a higher energy consumption.


2018 ◽  
Vol 3 (10) ◽  
pp. 9
Author(s):  
Mohd Najib Mohd Salleh ◽  
Mohd Zin Kandar ◽  
Siti Rasidah Md Sakip

Increased energy demand end to the world grew by 39% between 1990 to 2008 and further increased by 40% between 2007 to 2030. Energy consumption in buildings has been identified to contribute up to 40% of the total world. Through the selection of methods and the right strategy will reduce the problem of increase energy in buildings. Based on the theory of energy efficiency developed it can achieve through three main factors; a) building design; b) design of services; c) user behavior. This paper aims to discuss methods to benchmark user perception on energy efficiency in school buildings.Keywords: Benchmarking; energy efficiency; school building; user perceptioneISSN 2398-4279 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
A. Toffolo ◽  
S. Rech ◽  
A. Lazzaretto

The fundamental challenge in the synthesis/design optimization of energy systems is the definition of system configuration and design parameters. The traditional way to operate is to follow the previous experience, starting from the existing design solutions. A more advanced strategy consists in the preliminary identification of a superstructure that should include all the possible solutions to the synthesis/design optimization problem and in the selection of the system configuration starting from this superstructure through a design parameter optimization. This top–down approach cannot guarantee that all possible configurations could be predicted in advance and that all the configurations derived from the superstructure are feasible. To solve the general problem of the synthesis/design of complex energy systems, a new bottom–up methodology has been recently proposed by the authors, based on the original idea that the fundamental nucleus in the construction of any energy system configuration is the elementary thermodynamic cycle, composed only by the compression, heat transfer with hot and cold sources and expansion processes. So, any configuration can be built by generating, according to a rigorous set of rules, all the combinations of the elementary thermodynamic cycles operated by different working fluids that can be identified within the system, and selecting the best resulting configuration through an optimization procedure. In this paper, the main concepts and features of the methodology are deeply investigated to show, through different applications, how an artificial intelligence can generate system configurations of various complexity using preset logical rules without any “ad hoc” expertise.


2021 ◽  
Vol 263 (6) ◽  
pp. 275-286
Author(s):  
Teresa Bravo ◽  
Cedric Maury

The problem of space-constrained absorbers in the low frequency range constitutes an area of continuous research. Micro-perforated panels are advantageous because they can be tuned by a proper selection of their constitutive physical parameters including the diameter of the perforations and their separation distance, their thickness and the length of the backing cavity. However, such optimal selection is not straightforward, especially when considering multi-layer partitions. Current optimization algorithms are based on the maximization of the total absorption coefficient averaged over a frequency band, that requires a compromise between the bandwidth and the thickness of the control device. In this work, the problem is analysed on the basis of a causality criterion. This principle is generalized from its formulation in the field of electromagnetism to obtain a relation that correlates the thickness-to-bandwidth performance of a micro-perforated absorber to its total absorption coefficient. Using this relation, an optimization procedure is presented for the sequential selection of the optimal physical parameters for single-layer partitions. An excellent agreement has been found between the optimal values obtained by the causality criterion and those achieved by critical coupling conditions.


Sign in / Sign up

Export Citation Format

Share Document