The Influence of the Re-Melting Times on Microstructure and Mechanical Properties for Revert Alloy K452

2013 ◽  
Vol 747-748 ◽  
pp. 715-722 ◽  
Author(s):  
Chao Yuan ◽  
Jian Ting Guo ◽  
Chang Jiang Liu ◽  
Jie Shan Hou ◽  
Gu Song Li

The influence of the re-melting times on chemical composition, microstructure, and mechanical properties of revert alloy K452 were systemically investigated. It was shown that the key factor in the engineering application was the control of gas content and porosities level in revert alloy. By an advancing technology in combination with the superheat treatment, adding a small amount of alloying elements such as C, Al, Ti, and using ceramic foam filters during vacuum induction melting, the composition and mechanical properties of the revert alloy in addition of 50% scrap were similar to that in the virgin alloy, which has successfully been used in applications for nozzle vanes of some new gas turbines.

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2052
Author(s):  
Juraj Lapin ◽  
Kateryna Kamyshnykova

The effect of Ta and W additions on microstructure and mechanical properties of tilt-cast Ti-45Al-5Nb-2C (at.%) alloy was investigated. Three alloys with nominal composition Ti-45Al-5Nb-2C-2X (in at.%), where X is Ta or W, were prepared by vacuum induction melting in graphite crucibles followed by tilt casting into graphite moulds. The microstructure of the tilt-cast alloys consists of the α2(Ti3Al) + γ(TiAl) lamellar grains, single γ phase, (Ti,Nb,X)2AlC particles with a small amount of (Ti,Nb,X)C, and β/B2 phase identified only in W containing alloy. The EDS analysis shows that Ta segregates into the carbide particles and reduces dissolution of Nb in both (Ti,Nb,Ta)C and (Ti,Nb,Ta)2AlC phases. The alloying with W reduces Nb content in both carbide phases and leads to stabilisation of β/B2 phase in the lamellar α2 + γ regions. The alloying with Ta and W does not affect the volume fraction of the carbide particles but influences their size and morphology. While the alloying with Ta and W has no significant effect on Vickers hardness and the indentation elastic modulus of the studied alloys, the addition of Ta affects the nanohardness and elastic modulus of the (Ti,Nb,Ta)2AlC phase. The addition of W significantly increases the Vickers microhardness of the lamellar α2 + γ regions.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3423 ◽  
Author(s):  
Juraj Lapin ◽  
Kateryna Kamyshnykova ◽  
Alena Klimova

Microstructure and mechanical properties of two TiAl-based alloys with nominal composition Ti-42.6Al-8.7Nb-0.3Ta-2.0C and Ti-41.0Al-8.7Nb-0.3Ta-3.6C (in at.%) were investigated and compared. The alloys were prepared by vacuum induction melting, followed by centrifugal casting. The as-cast samples were subjected to hot isostatic pressing and heat treatment consisting of solution annealing in β (Ti-based solid solution) phase field, cooling at a constant rate and stabilization annealing. The microstructure of the alloys consists of α2 (Ti3Al) + γ (TiAl) lamellar grains, single γ phase, coarse Ti2AlC particles, and irregular shaped α2 phase. The increase in the content of C at the expense of decreasing Al in the studied alloys affects solid-state phase transformation temperatures and leads to a decrease in size of grains and primary Ti2AlC particles, increase in the volume fraction of reinforcing carbide particles, decrease in the volume fraction of lamellar colonies, and widening of the grain boundaries. Long-term ageing at 800 °C has no effect on the grain size but leads to the formation of Ti4Al3Nb particles and increase in interlamellar spacing. The Vickers hardness, microhardness of lamellar grains, indentation nanohardness, and elastic modulus of the boundary γ phase decrease during ageing. The Ti-42.6Al-8.7Nb-0.3Ta-2.0C alloy shows improved creep resistance compared to that of Ti-41.0Al-8.7Nb-0.3Ta-3.6C and some reference TiAl-based alloys at a temperature of 800 °C and applied stress of 200 MPa.


Alloy Digest ◽  
1987 ◽  
Vol 36 (1) ◽  

Abstract UDIMET 700 is a wrought nickel-base alloy produced by vacuum-induction melting and further refined by vacuum-arc remelting. It has excellent mechanical properties at high temperatures. Among its applications are blades for aircraft, marine and land-based gas turbines and rotor discs. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-51. Producer or source: Special Metals Corporation. Originally published March 1959, revised January 1987.


2012 ◽  
Vol 182-183 ◽  
pp. 162-166
Author(s):  
Can Can Li ◽  
Hao Ran Geng ◽  
Zhen Yuan Li ◽  
Hai Ou Qin

In this paper, Al-12.6%Si/Al63Cu25Fe12 composites were fabricated by method of casting. The microstructure and chemical composition of Al63Cu25Fe12 quasicrystal alloy and Al-12.6%Si alloy reinforced by the quasicrystal were studied, and the mechanical properties of Al-12.6%Si composite were also measured. The results show that almost single quasicrystalline phases exist in the samples which are cast with the 1300°C melt. Quickly enough cooling rate and appropriate melt temperature are necessary for the formation of the quasicrystalline phase. In addition, Al-12.6%Si composite has optimal mechanical properties when the amount of Al63Cu25Fe12 quasicrystal is 3 wt%.


2021 ◽  
Vol 1035 ◽  
pp. 89-95
Author(s):  
Chao Tan ◽  
Zi Yong Chen ◽  
Zhi Lei Xiang ◽  
Xiao Zhao Ma ◽  
Zi An Yang

A new type of Ti-Al-Sn-Zr-Mo-Si series high temperature titanium alloy was prepared by a water-cooled copper crucible vacuum induction melting method, and its phase transition point was determined by differential thermal analysis to be Tβ = 1017 °C. The influences of solution temperature on the microstructures and mechanical properties of the as-forged high temperature titanium alloy were studied. XRD results illustrated that the phase composition of the alloy after different heat treatments was mainly α phase and β phase. The microstructures showed that with the increase of the solution temperature, the content of the primary α phase gradually reduced, the β transformation structure increased by degrees, then, the number and size of secondary α phase increased obviously. The tensile results at room temperature (RT) illustrated that as the solution temperature increased, the strength of the alloy gradually increased, and the plasticity decreased slightly. The results of tensile test at 650 °C illustrated that the strength of the alloy enhanced with the increase of solution temperature, the plasticity decreased first and then increased, when the solution temperature increased to 1000 °C, the alloy had the best comprehensive mechanical properties, the tensile strength reached 714.01 MPa and the elongation was 8.48 %. Based on the room temperature and high temperature properties of the alloy, the best heat treatment process is finally determined as: 1000 °C/1 h/AC+650 °C/6 h/AC.


2020 ◽  
Vol 46 (11) ◽  
pp. 18046-18055
Author(s):  
Guoqiang Yang ◽  
Haiqing Yin ◽  
Zhenghua Deng ◽  
Cong Zhang ◽  
Ruijie Zhang ◽  
...  

2016 ◽  
Vol 879 ◽  
pp. 1282-1287 ◽  
Author(s):  
Sabrina Mengaroni ◽  
Paolo Emilio di Nunzio ◽  
Stefano Neri ◽  
Massimo Calderini ◽  
Claudio Braccesi ◽  
...  

To fulfill the industrial demand of forged steels with high mechanical and microstructural requirements coupled with reduced cost, the possibility to decrease the content of Mo and other elements has been evaluated. In order to do that, the effect of boron addition (up to 30 ppm) on the steel hardenability has been investigated on two steels with different chemical composition at laboratory scale. In particular, the steel chemical composition has been designed in order to make effective the B addition in terms of hardenability. Two 80 kg ingots cast by a vacuum induction melting plant have been hot rolled by a pilot mill. The effect of B addition on hardenability has been evaluated and compared to that of steel for same application but without B. Results show an improvement of hardenability if 30 ppm B are added even if a Mo reduction is performed.


Sign in / Sign up

Export Citation Format

Share Document